Mesure physiqueLa mesure physique est l'action de déterminer la ou les valeurs d'une grandeur (longueur, capacité), par comparaison avec une grandeur constante de même espèce prise comme terme de référence (étalon ou unité). Selon la définition canonique : La mesure physique vise à l'objectivité et à la reproductibilité. La comparaison est numérique ; on exprime une caractéristique bien définie de l'objet par un nombre rationnel multipliant l'unité.
Fraction continue généraliséeEn mathématiques, une fraction continue généralisée est une expression de la forme : comportant un nombre fini ou infini d'étages. C'est donc une généralisation des fractions continues simples puisque dans ces dernières, tous les a sont égaux à 1. Une fraction continue généralisée est une généralisation des fractions continues où les numérateurs et dénominateurs partiels peuvent être des complexes quelconques : où an (n > 0) sont les numérateurs partiels et les bn les dénominateurs partiels.
UncertaintyUncertainty refers to epistemic situations involving imperfect or unknown information. It applies to predictions of future events, to physical measurements that are already made, or to the unknown. Uncertainty arises in partially observable or stochastic environments, as well as due to ignorance, indolence, or both. It arises in any number of fields, including insurance, philosophy, physics, statistics, economics, finance, medicine, psychology, sociology, engineering, metrology, meteorology, ecology and information science.
Rapport (mathématiques)En sciences, un rapport est le quotient de deux valeurs qui se rapportent à des grandeurs de la même espèce. Quand le quotient se rapporte à des grandeurs d'espèces différentes, on parle de taux. Un rapport est une grandeur sans dimension : il ne conserve aucune trace des grandeurs qu'il compare. Un rapport s'exprime souvent en pourcentage. Dans les spécialités les plus en relation avec l'aire anglophone, on emploie souvent le mot d'origine latine , dont la définition est identique.
Uncertainty quantificationUncertainty quantification (UQ) is the science of quantitative characterization and estimation of uncertainties in both computational and real world applications. It tries to determine how likely certain outcomes are if some aspects of the system are not exactly known. An example would be to predict the acceleration of a human body in a head-on crash with another car: even if the speed was exactly known, small differences in the manufacturing of individual cars, how tightly every bolt has been tightened, etc.
Inférence statistiquevignette|Illustration des 4 principales étapes de l'inférence statistique L'inférence statistique est l'ensemble des techniques permettant d'induire les caractéristiques d'un groupe général (la population) à partir de celles d'un groupe particulier (l'échantillon), en fournissant une mesure de la certitude de la prédiction : la probabilité d'erreur. Strictement, l'inférence s'applique à l'ensemble des membres (pris comme un tout) de la population représentée par l'échantillon, et non pas à tel ou tel membre particulier de cette population.
International Linear ColliderThe International Linear Collider (ILC) is a proposed linear particle accelerator. It is planned to have a collision energy of 500 GeV initially, with the possibility for a later upgrade to 1000 GeV (1 TeV). Although early proposed locations for the ILC were Japan, Europe (CERN) and the USA (Fermilab), the Kitakami highland in the Iwate prefecture of northern Japan has been the focus of ILC design efforts since 2013. The Japanese government is willing to contribute half of the costs, according to the coordinator of study for detectors at the ILC.
Statistical mechanicsIn physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. It does not assume or postulate any natural laws, but explains the macroscopic behavior of nature from the behavior of such ensembles. Sometimes called statistical physics or statistical thermodynamics, its applications include many problems in the fields of physics, biology, chemistry, and neuroscience.
Fraction continue de GaussEn analyse complexe, une fraction continue de Gauss est un cas particulier de fraction continue dérivé des fonctions hypergéométriques. Ce fut l'un des premiers exemples de fractions continues analytiques. Elles permettent de représenter des fonctions élémentaires importantes, ainsi que des fonctions spéciales transcendantes plus compliquées. Lambert a publié quelques exemples de fractions continues généralisées de cette forme en 1768, démontrant entre autres l'irrationalité de π ( § « Applications à F » ci-dessous).
Propagation des incertitudesUne mesure est toujours entachée d'erreur, dont on estime l'intensité par l'intermédiaire de l'incertitude. Lorsqu'une ou plusieurs mesures sont utilisées pour obtenir la valeur d'une ou de plusieurs autres grandeurs (par l'intermédiaire d'une formule explicite ou d'un algorithme), il faut savoir, non seulement calculer la valeur estimée de cette ou ces grandeurs, mais encore déterminer l'incertitude ou les incertitudes induites sur le ou les résultats du calcul.