Mathématiques discrètesLes mathématiques discrètes, parfois appelées mathématiques finies, sont l'étude des structures mathématiques fondamentalement discrètes, par opposition aux structures continues. Contrairement aux nombres réels, qui ont la propriété de varier "en douceur", les objets étudiés en mathématiques discrètes (tels que les entiers relatifs, les graphes simples et les énoncés en logique) ne varient pas de cette façon, mais ont des valeurs distinctes séparées.
Discrete-time Fourier transformIn mathematics, the discrete-time Fourier transform (DTFT), also called the finite Fourier transform, is a form of Fourier analysis that is applicable to a sequence of values. The DTFT is often used to analyze samples of a continuous function. The term discrete-time refers to the fact that the transform operates on discrete data, often samples whose interval has units of time. From uniformly spaced samples it produces a function of frequency that is a periodic summation of the continuous Fourier transform of the original continuous function.
Équation de continuitévignette|mécanique des fluides En mécanique des fluides, le principe de conservation de la masse peut être décrit par l'équation de continuité sous plusieurs formes différentes : locale conservative (dérivée en temps normale), locale non conservative (la dérivée en temps suit la particule dans son mouvement), ou intégrale. Suivant les problèmes posés, c'est l'une ou l'autre de ces équations qui pourra être retenue, toutes étant équivalentes.
Convergence simpleEn mathématiques, la convergence simple ou ponctuelle est une notion de convergence dans un espace fonctionnel, c’est-à-dire dans un ensemble de fonctions entre deux espaces topologiques. C'est une définition peu exigeante : elle est plus facile à établir que d'autres formes de convergence, notamment la convergence uniforme. Le passage à la limite possède donc moins de propriétés : une suite de fonctions continues peut ainsi converger simplement vers une fonction qui ne l'est pas.
Compact convergenceIn mathematics compact convergence (or uniform convergence on compact sets) is a type of convergence that generalizes the idea of uniform convergence. It is associated with the compact-open topology. Let be a topological space and be a metric space. A sequence of functions is said to converge compactly as to some function if, for every compact set , uniformly on as . This means that for all compact , If and with their usual topologies, with , then converges compactly to the constant function with value 0, but not uniformly.
Débit cardiaqueLe est le volume de sang fourni par le cœur par unité de temps. Il s’exprime en L/min Comme pour toute mesure de débit, il s'agit de mesurer le volume fourni par l'appareil étudié (ici le cœur) par unité de temps. Si l'on peut mesurer le débit d'un robinet d'eau en recueillant la totalité du liquide émis par celui-ci, on ne peut pas recueillir la totalité du volume de sang fourni par le cœur, faute de survie du sujet étudié. Dans ces cas là, on utilise la méthode de dilution d'un index.
Convergence absolueEn mathématiques, une série numérique réelle ou complexe converge absolument si, par définition, la série des valeurs absolues (ou des modules) est convergente. Cette définition peut être étendue aux séries à valeurs dans un espace vectoriel normé et complet, soit un espace de Banach. Dans tous ces contextes, cette condition est suffisante pour assurer la convergence de la série elle-même. Par analogie, l'intégrale d'une fonction à valeurs réelles ou complexes converge absolument si, par définition, l'intégrale de la valeur absolue (ou du module) de la fonction est convergente (fonction dans L1).
Mécanique des fluidesLa mécanique des fluides est un domaine de la physique consacré à l’étude du comportement des fluides (liquides, gaz et plasmas) et des forces internes associées. C’est une branche de la mécanique des milieux continus qui modélise la matière à l’aide de particules assez petites pour relever de l’analyse mathématique, mais assez grandes par rapport aux molécules pour être décrites par des fonctions continues. Elle comprend deux sous-domaines : la statique des fluides, qui est l’étude des fluides au repos, et la dynamique des fluides, qui est l’étude des fluides en mouvement.
Variable discrèteIn mathematics and statistics, a quantitative variable may be continuous or discrete if they are typically obtained by measuring or counting, respectively. If it can take on two particular real values such that it can also take on all real values between them (even values that are arbitrarily close together), the variable is continuous in that interval. If it can take on a value such that there is a non-infinitesimal gap on each side of it containing no values that the variable can take on, then it is discrete around that value.
Transformation de Fourier discrèteEn mathématiques, la transformation de Fourier discrète (TFD) sert à traiter un signal numérique. Elle constitue un équivalent discret (c'est-à-dire pour un signal défini à partir d'un nombre fini d'échantillons) de la transformation de Fourier (continue) utilisée pour traiter un signal analogique. Plus précisément, la TFD est la représentation spectrale discrète dans le domaine des fréquences d'un signal échantillonné. La transformation de Fourier rapide est un algorithme particulier de calcul de la transformation de Fourier discrète.