Sinusoidal plane-wave solutions of the electromagnetic wave equationSinusoidal plane-wave solutions are particular solutions to the electromagnetic wave equation. The general solution of the electromagnetic wave equation in homogeneous, linear, time-independent media can be written as a linear superposition of plane-waves of different frequencies and polarizations. The treatment in this article is classical but, because of the generality of Maxwell's equations for electrodynamics, the treatment can be converted into the quantum mechanical treatment with only a reinterpretation of classical quantities (aside from the quantum mechanical treatment needed for charge and current densities).
Polarisation (optique)La polarisation est une propriété qu'ont les ondes vectorielles (ondes qui peuvent osciller selon plus d'une orientation) de présenter une répartition privilégiée de l'orientation des vibrations qui les composent. Les ondes électromagnétiques, telles que la lumière, ou les ondes gravitationnelles ont ainsi des propriétés de polarisation. Les ondes mécaniques transverses dans les solides peuvent aussi être polarisées. Cependant, les ondes longitudinales (telles que les ondes sonores) ne sont pas concernées.
Polarisation circulaireLa polarisation circulaire d'un rayonnement électromagnétique est une polarisation où la norme du vecteur du champ électrique ne change pas alors que son orientation change selon un mouvement de rotation. En électrodynamique la norme et la direction d'un champ électrique sont représentés par un vecteur comme on peut le voir dans l'animation ci-contre. Dans le cas d'une onde polarisée circulairement, les vecteurs d'un champ électrique, à un point donné dans l'espace, décrivent un cercle en fonction du temps.
Matrice par blocsvignette|Un matrice présente une structure par blocs si l'on peut isoler les termes non nuls dans des sous-matrices (ici la structure « diagonale par blocs » d'une réduite de Jordan). On appelle matrice par blocs une matrice divisée en blocs à partir d'un groupement quelconque de termes contigus de sa diagonale. Chaque bloc étant indexé comme on indicerait les éléments d'une matrice, la somme et le produit de deux matrices partitionnées suivant les mêmes tailles de bloc, s'obtiennent avec les mêmes règles formelles que celles des composantes (mais en veillant à l'ordre des facteurs dans les produits matriciels!).
Groupe symplectiqueEn mathématiques, le terme groupe symplectique est utilisé pour désigner deux familles différentes de groupes linéaires. On les note Sp(2n, K) et Sp(n), ce dernier étant parfois nommé groupe compact symplectique pour le distinguer du premier. Cette notation ne fait pas l’unanimité et certains auteurs en utilisent d’autres, différant généralement d’un facteur 2. La notation utilisée dans cet article est en rapport avec la taille des matrices représentant les groupes.
Lame à retardthumb|360px|Une lame demi-onde. La lumière entrant dans la lame peut être décomposée en deux polarisations perpendiculaires (en bleu et vert). À l'intérieur de la lame, la polarisation verte prend un retard par rapport à la bleue. La lumière en sortie est alors polarisée différemment. Une lame à retard est un outil optique capable de modifier la polarisation de la lumière la traversant. Contrairement à un polariseur, l'état de polarisation de la lumière à la sortie de la lame dépend de l'état à l'entrée.
Forme linéaireEn algèbre linéaire, une forme linéaire sur un espace vectoriel est une application linéaire sur son corps de base. En dimension finie, elle peut être représentée par une matrice ligne qui permet d’associer à son noyau une équation cartésienne. Dans le cadre du calcul tensoriel, une forme linéaire est aussi appelée covecteur, en lien avec l’action différente des matrices de changement de base.
Couplage croiséEn chimie organique, un couplage croisé est une réaction de couplage entre deux fragments moléculaires par formation d'une liaison carbone-carbone sous l'effet d'un catalyseur organométallique. Par exemple, un composé , où R est un fragment organique et M un métal du groupe principal, réagit avec un halogénure organique , où X est un halogène, pour former un produit . Les chimistes Richard Heck, Ei-ichi Negishi et Akira Suzuki ont reçu le prix Nobel de chimie 2010 pour avoir développé des réactions de couplage catalysées au palladium.
Direct sumThe direct sum is an operation between structures in abstract algebra, a branch of mathematics. It is defined differently, but analogously, for different kinds of structures. To see how the direct sum is used in abstract algebra, consider a more elementary kind of structure, the abelian group. The direct sum of two abelian groups and is another abelian group consisting of the ordered pairs where and . To add ordered pairs, we define the sum to be ; in other words addition is defined coordinate-wise.
Réaction de couplageEn chimie organique, une réaction de couplage est une transformation qui permet l'association de deux radicaux hydrocarbures, en général à l'aide d'un catalyseur métallique. Deux classifications sont possibles en fonction de la nature du produit formé ou de celle des réactifs mis en jeu : dans le premier cas, si le produit est symétrique (formé par l'association de deux molécules identiques), on parle d'homocouplage. Il s'agit en général de la réaction d'un halogénure aromatique avec une deuxième molécule identique ou de celle d'un organométallique de la même manière.