Couplage de HiyamaLe couplage de Hiyama est une réaction de couplage entre un organosilane et un halogénure organique ou un triflate, catalysée par du palladium parfois assisté par du nickel. Ce couplage a été décrit pour la première fois par Yasuo Hatanaka et Tamejiro Hiyama en 1988. Dans la publication initiale de 1988, le 1-iodonaphtalène réagit avec le triméthylvinylsilane pour produire le 1-vinylnaphtalène avec une catalyse au chlorure d'allylpalladium. Cette réaction dispose de plusieurs avantages.
Square matrixIn mathematics, a square matrix is a matrix with the same number of rows and columns. An n-by-n matrix is known as a square matrix of order . Any two square matrices of the same order can be added and multiplied. Square matrices are often used to represent simple linear transformations, such as shearing or rotation. For example, if is a square matrix representing a rotation (rotation matrix) and is a column vector describing the position of a point in space, the product yields another column vector describing the position of that point after that rotation.
Definite matrixIn mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector where is the transpose of . More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number is positive for every nonzero complex column vector where denotes the conjugate transpose of Positive semi-definite matrices are defined similarly, except that the scalars and are required to be positive or zero (that is, nonnegative).
Couplage de KumadaUn couplage de Kumada ou couplage de Kumada-Corriu est une réaction de couplage croisé de chimie organique entre un réactif de Grignard alkyle ou aryle et un dérivé halogéné aryle ou vinyle catalysé par du nickel ou du palladium. Cette réaction est importante en synthèse organique car elle permet de synthétiser des composés de styrène. Ce type de réaction a été découverte de manière indépendante par deux groupes en 1972.
Produit direct (groupes)En mathématiques, et plus particulièrement en théorie des groupes, le produit direct d'une famille de groupes est une structure de groupe qui se définit naturellement sur le produit cartésien des ensembles sous-jacents à ces groupes. Soient et deux groupes. Désignons par leur produit cartésien (ou, plus exactement, le produit cartésien de leurs ensembles sous-jacents). Il est naturel de définir sur une loi de composition composante par composante : le produit apparaissant dans le second membre étant calculé dans et le produit dans .
Addition matriciellevignette|Illustration d'une addition matricielle L'addition matricielle est une opération mathématique qui consiste à produire une matrice qui est le résultat de l'addition de deux matrices de même type. L'addition des matrices est définie pour deux matrices de même type. La somme de deux matrices de type (m, n), et , notée A + B, est à nouveau une matrice de type (m, n) obtenue en additionnant les éléments correspondants, i.e., pour tous i, j, Par exemple: L'ensemble des matrices de type (m, n) avec la loi d'addition forment un groupe abélien.
Amplitude amplificationAmplitude amplification is a technique in quantum computing which generalizes the idea behind Grover's search algorithm, and gives rise to a family of quantum algorithms. It was discovered by Gilles Brassard and Peter Høyer in 1997, and independently rediscovered by Lov Grover in 1998. In a quantum computer, amplitude amplification can be used to obtain a quadratic speedup over several classical algorithms. The derivation presented here roughly follows the one given by Brassard et al. in 2000.
Transformée de Fourier quantiqueEn informatique quantique, la transformée de Fourier quantique (TFQ) est une transformation linéaire sur des bits quantiques, et est l'analogie quantique de la transformée de Fourier discrète. La transformée de Fourier quantique est l'un des nombreux algorithmes quantiques, qui incluent notamment l'algorithme de Shor qui permet de factoriser et de calculer le logarithme discret, l'algorithme d'estimation de phase quantique qui estime les valeurs propres d'un opérateur unitaire et les algorithmes traitant du problème de sous-groupe caché .
Conductivité thermiqueLa conductivité thermique (ou conductibilité thermique) d'un matériau est une grandeur physique qui caractérise sa capacité à diffuser la chaleur dans les milieux sans déplacement macroscopique de matière. C'est le rapport de l'énergie thermique (quantité de chaleur) transférée par unité de temps (donc homogène à une puissance, en watts) et de surface au gradient de température. Notée λ (anciennement K voire k), la conductivité thermique intervient notamment dans la loi de Fourier.
Équation différentielle linéaireUne équation différentielle linéaire est un cas particulier d'équation différentielle pour lequel on peut appliquer des procédés de superposition de solutions, et exploiter des résultats d'algèbre linéaire. De nombreuses équations différentielles de la physique vérifient la propriété de linéarité. De plus, les équations différentielles linéaires apparaissent naturellement en perturbant une équation différentielle (non linéaire) autour d'une de ses solutions.