Noncommutative ringIn mathematics, a noncommutative ring is a ring whose multiplication is not commutative; that is, there exist a and b in the ring such that ab and ba are different. Equivalently, a noncommutative ring is a ring that is not a commutative ring. Noncommutative algebra is the part of ring theory devoted to study of properties of the noncommutative rings, including the properties that apply also to commutative rings. Sometimes the term noncommutative ring is used instead of ring to refer to an unspecified ring which is not necessarily commutative, and hence may be commutative.
K-théorie algébriqueEn mathématiques, la K-théorie algébrique est une branche importante de l'algèbre homologique. Son objet est de définir et d'appliquer une suite de foncteurs K de la catégorie des anneaux dans celle des groupes abéliens. Pour des raisons historiques, K et K sont conçus en des termes un peu différents des K pour n ≥ 2. Ces deux K-groupes sont en effet plus accessibles et ont plus d'applications que ceux d'indices supérieurs. La théorie de ces derniers est bien plus profonde et ils sont beaucoup plus difficiles à calculer, ne serait-ce que pour l'anneau des entiers.
FibréEn mathématiques, un espace fibré est, intuitivement, un espace topologique qui est localement le produit de deux espaces — appelés la base et la fibre — mais en général pas globalement. Par exemple, le ruban de Möbius est un fibré de base un cercle et de fibre un segment de droite : il ressemble localement au produit d'un cercle par un segment, mais pas globalement comme le cylindre Plus précisément, l'espace total du fibré est muni d'une projection continue sur la base, telle que la de chaque point soit homéomorphe à la fibre.
Complexe simplicialthumb|Exemple d'un complexe simplicial.En mathématiques, un complexe simplicial est un objet géométrique déterminé par une donnée combinatoire et permettant de décrire certains espaces topologiques en généralisant la notion de triangulation d'une surface. Un tel objet se présente comme un graphe avec des sommets reliés par des arêtes, sur lesquelles peuvent se rattacher des faces triangulaires, elles-mêmes bordant éventuellement des faces de dimension supérieure, etc.
Fibré associéEn géométrie différentielle, un fibré associé est un fibré qui est induit par un -fibré principal et une action du groupe structurel sur un espace auxiliaire. Soient : un groupe de Lie ; une variété différentielle ; un -fibré principal sur ; l'action de groupe à droite de sur ; une action de groupe à gauche de sur une variété différentielle . Définition Le fibré associé à pour est le fibré où est défini par : où la relation d'équivalence est : Remarques Les fibres de sont de fibre type .
Théorie de l'homotopie stableEn mathématiques, la théorie de l'homotopie stable est une partie de la théorie de l'homotopie concernée par les structures et tous les phénomènes qui subsistent après suffisamment d'applications du foncteur de suspension. Un résultat fondateur a été le théorème de suspension de Freudenthal, qui stipule que, étant donné tout espace pointé , les groupes d'homotopie se stabilisent pour suffisamment grand. En particulier, les groupes d'homotopie des sphères se stabilisent pour .
Closed monoidal categoryIn mathematics, especially in , a closed monoidal category (or a monoidal closed category) is a that is both a and a in such a way that the structures are compatible. A classic example is the , Set, where the monoidal product of sets and is the usual cartesian product , and the internal Hom is the set of functions from to . A non- example is the , K-Vect, over a field . Here the monoidal product is the usual tensor product of vector spaces, and the internal Hom is the vector space of linear maps from one vector space to another.
Category (mathematics)In mathematics, a category (sometimes called an abstract category to distinguish it from a ) is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. A simple example is the , whose objects are sets and whose arrows are functions. is a branch of mathematics that seeks to generalize all of mathematics in terms of categories, independent of what their objects and arrows represent.
Quasi-catégorieEn mathématiques, plus précisément en théorie des catégories, une quasi-catégorie est une généralisation de la notion de catégorie. L'étude de telles généralisations est connue sous le nom de théorie des catégories supérieures. Les quasi-catégories ont été introduites par et Vogt en 1973. André Joyal a fait beaucoup progresser l'étude des quasi-catégories en montrant qu’il existe un analogue pour les quasi-catégories de la plupart des notions de base de la théorie des catégories et même de certaines notions et théorèmes d’un niveau plus avancé.
Fibré des repèresEn géométrie différentielle, un fibré des repères est un certain type de fibré principal qui correspond à un fibré vectoriel sur une variété différentielle. Les points du fibré des repères sont les repères linéaires des fibres du fibré vectoriel correspondant. L'exemple le plus commun de fibré des repères est le fibré des repères tangents correspondant au fibré tangent d'une variété différentielle.