Système temps réelEn informatique, on parle d'un système temps réel lorsque ce système est capable de contrôler (ou piloter) un procédé physique à une vitesse adaptée à l'évolution du procédé contrôlé. Les systèmes informatiques temps réel se différencient des autres systèmes informatiques par la prise en compte de contraintes temporelles dont le respect est aussi important que l'exactitude du résultat, autrement dit le système ne doit pas simplement délivrer des résultats exacts, il doit les délivrer dans des délais imposés.
Enveloppe convexeL'enveloppe convexe d'un objet ou d'un regroupement d'objets géométriques est l'ensemble convexe le plus petit parmi ceux qui le contiennent. Dans un plan, l'enveloppe convexe peut être comparée à la région limitée par un élastique qui englobe tous les points qu'on relâche jusqu'à ce qu'il se contracte au maximum. L'idée serait la même dans l'espace avec un ballon qui se dégonflerait jusqu'à être en contact avec tous les points qui sont à la surface de l'enveloppe convexe.
Optimisation SDPEn mathématiques et en informatique théorique, l'optimisation SDP ou semi-définie positive, est un type d'optimisation convexe, qui étend l'optimisation linéaire. Dans un problème d'optimisation SDP, l'inconnue est une matrice symétrique que l'on impose d'être semi-définie positive. Comme en optimisation linéaire, le critère à minimiser est linéaire et l'inconnue doit également satisfaire une contrainte affine. L'optimisation SDP se généralise par l'optimisation conique, qui s'intéresse aux problèmes de minimisation d'une fonction linéaire sur l'intersection d'un cône et d'un sous-espace affine.
Optimisation non linéaireEn optimisation, vue comme branche des mathématiques, l'optimisation non linéaire (en anglais : nonlinear programming – NLP) s'occupe principalement des problèmes d'optimisation dont les données, i.e., les fonctions et ensembles définissant ces problèmes, sont non linéaires, mais sont aussi différentiables autant de fois que nécessaire pour l'établissement des outils théoriques, comme les conditions d'optimalité, ou pour la bonne marche des algorithmes de résolution qui y sont introduits et analysés.
Convex polytopeA convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the -dimensional Euclidean space . Most texts use the term "polytope" for a bounded convex polytope, and the word "polyhedron" for the more general, possibly unbounded object. Others (including this article) allow polytopes to be unbounded. The terms "bounded/unbounded convex polytope" will be used below whenever the boundedness is critical to the discussed issue.
Global optimizationGlobal optimization is a branch of applied mathematics and numerical analysis that attempts to find the global minima or maxima of a function or a set of functions on a given set. It is usually described as a minimization problem because the maximization of the real-valued function is equivalent to the minimization of the function . Given a possibly nonlinear and non-convex continuous function with the global minima and the set of all global minimizers in , the standard minimization problem can be given as that is, finding and a global minimizer in ; where is a (not necessarily convex) compact set defined by inequalities .
Fixed-point iterationIn numerical analysis, fixed-point iteration is a method of computing fixed points of a function. More specifically, given a function defined on the real numbers with real values and given a point in the domain of , the fixed-point iteration is which gives rise to the sequence of iterated function applications which is hoped to converge to a point . If is continuous, then one can prove that the obtained is a fixed point of , i.e., More generally, the function can be defined on any metric space with values in that same space.
Numerical methods for partial differential equationsNumerical methods for partial differential equations is the branch of numerical analysis that studies the numerical solution of partial differential equations (PDEs). In principle, specialized methods for hyperbolic, parabolic or elliptic partial differential equations exist. Finite difference method In this method, functions are represented by their values at certain grid points and derivatives are approximated through differences in these values.
Algorithme du gradientLalgorithme du gradient, aussi appelé algorithme de descente de gradient, désigne un algorithme d'optimisation différentiable. Il est par conséquent destiné à minimiser une fonction réelle différentiable définie sur un espace euclidien (par exemple, , l'espace des n-uplets de nombres réels, muni d'un produit scalaire) ou, plus généralement, sur un espace hilbertien. L'algorithme est itératif et procède donc par améliorations successives. Au point courant, un déplacement est effectué dans la direction opposée au gradient, de manière à faire décroître la fonction.
Contrôle de processusLe contrôle de processus est un terme utilisé pour désigner l'ensemble du matériel et des logiciels servant à piloter et surveiller le processus de fabrication de produits. Il est le plus souvent constitué d'une chaîne de moyens (appelée boucle de régulation) : capteurs de mesures physiques ou physico-chimiques : pression, niveau, débit, température, pH, viscosité, turbidité, conductivité... Ces capteurs fournissent aux régulateurs de manière continue ou discrète l'indication directe ou indirecte de l'état du processus.