Optimisation multiobjectifL'optimisation multiobjectif (appelée aussi Programmation multi-objective ou optimisation multi-critère) est une branche de l'optimisation mathématique traitant spécifiquement des problèmes d'optimisation ayant plusieurs fonctions objectifs. Elle se distingue de l'optimisation multidisciplinaire par le fait que les objectifs à optimiser portent ici sur un seul problème. Les problèmes multiobjectifs ont un intérêt grandissant dans l'industrie où les responsables sont contraints de tenter d'optimiser des objectifs contradictoires.
Rivièrevignette|redresse|Après le torrent se forme la rivière (Hautes-Pyrénées). vignette|Phénomène de surcreusement du lit majeur, pouvant participer à un phénomène d'aridification, le niveau piézométrique de la nappe descendant avec celui de la rivière (Bardenas Reales). vignette|Le Waver (Pays-Bas). vignette|Embouchure de la rivière Batiscan (Québec) En hydrographie, une rivière est un cours d'eau au débit moyen à modéré (supérieur à ), recevant des affluents et qui se jette dans une autre rivière ou dans un fleuve.
Global optimizationGlobal optimization is a branch of applied mathematics and numerical analysis that attempts to find the global minima or maxima of a function or a set of functions on a given set. It is usually described as a minimization problem because the maximization of the real-valued function is equivalent to the minimization of the function . Given a possibly nonlinear and non-convex continuous function with the global minima and the set of all global minimizers in , the standard minimization problem can be given as that is, finding and a global minimizer in ; where is a (not necessarily convex) compact set defined by inequalities .
Optimisation (mathématiques)L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble. L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.
Lac de barragevignette|Lac de barrage de la Plate-Taille en Belgique avec sa tour d'observation. Un lac de barrage, lac de retenue ou réservoir est un plan d'eau dont le niveau est contrôlé par un ou plusieurs ouvrages d'art et qui est utilisé à des fins utilitaires. Un lac de barrage est alimenté par le ruissellement des eaux et la confluence de cours d'eau situés en amont.
Optimisation multidisciplinaireL'Optimisation de Conception Multidisciplinaire (OMD ou MDO, Multidisciplinary Design Optimisation, en anglais) est un domaine d'ingénierie qui utilise des méthodes d'optimisation afin de résoudre des problèmes de conception mettant en œuvre plusieurs disciplines. La MDO permet aux concepteurs d'incorporer les effets de chacune des disciplines en même temps. L'optimum global ainsi trouvé est meilleur que la configuration trouvée en optimisant chaque discipline indépendamment des autres, car l'on prend en compte les interactions entre les disciplines.
Alimentation en eau potableL’alimentation en eau potable (sigle : AEP) est l’ensemble des équipements, des services et des actions qui permettent, en partant d’une eau brute, de produire une eau conforme aux normes de potabilité en vigueur, distribuée ensuite aux consommateurs. On considère quatre étapes distinctes dans cette alimentation : prélèvements - captages (eau de surface ou eau souterraine) ; traitement pour potabiliser l'eau ; adduction (transport et stockage) ; distribution au consommateur.
Optimisation convexevignette|320x320px|Optimisation convexe dans un espace en deux dimensions dans un espace contraint L'optimisation convexe est une sous-discipline de l'optimisation mathématique, dans laquelle le critère à minimiser est convexe et l'ensemble admissible est convexe. Ces problèmes sont plus simples à analyser et à résoudre que les problèmes d'optimisation non convexes, bien qu'ils puissent être NP-difficile (c'est le cas de l'optimisation copositive). La théorie permettant d'analyser ces problèmes ne requiert pas la différentiabilité des fonctions.
Service écosystémiqueLes écosystèmes procurent de nombreux services dits services écologiques ou services écosystémiques. Certains étant vitaux pour de nombreuses espèces ou groupes d'espèces (comme la pollinisation), ils sont généralement classés comme bien commun et/ou bien public. Les notions d'évaluation (économique et parfois marchande) de la biodiversité et des services fournis par les écosystèmes, basées sur une vision anthropocentrée de la nature, ont émergé dans les années 1970-1990 avec notamment les travaux de Westman (1977), puis de Randall (1988), Pearce & Moran en 1994 et de Perrings (1995).
Problème de satisfaction de contraintesLes problèmes de satisfaction de contraintes ou CSP (Constraint Satisfaction Problem) sont des problèmes mathématiques où l'on cherche des états ou des objets satisfaisant un certain nombre de contraintes ou de critères. Les CSP font l'objet de recherches intenses à la fois en intelligence artificielle et en recherche opérationnelle. De nombreux CSP nécessitent la combinaison d'heuristiques et de méthodes d'optimisation combinatoire pour être résolus en un temps raisonnable.