Groupe divisibleEn mathématiques, et plus particulièrement en théorie des groupes, un groupe abélien divisible est un groupe abélien G tel que, pour tout nombre naturel n ≥ 1, on ait (en notation additive) G = nG. Ceci revient à dire que pour tout élément x de G et tout nombre naturel n ≥ 1, il existe au moins un élément y de G tel que x = ny. On peut étendre cette définition aux groupes non abéliens, un groupe divisible étant un groupe dans lequel (en notation multiplicative) tout élément est n-ième puissance, quel que soit l'entier naturel n ≥ 1.
Formules pour les nombres premiersEn mathématiques, la recherche de formules exactes donnant tous les nombres premiers, certaines familles de nombres premiers ou le nombre premier s'est généralement avérée vaine, ce qui a amené à se contenter de formules approchées. Cette page recense les principaux résultats obtenus. L'espoir d'obtenir une formule exacte et simple donnant le n-ième nombre premier p, ou le nombre π(n) de nombres premiers inférieurs ou égaux à n, s'est très tôt heurté à l'extrême irrégularité de leur répartition, ce qui a amené à se contenter d'objectifs moins ambitieux.
Nombre premier de WilsonEn arithmétique, un nombre premier de Wilson est un nombre premier p tel que p divise (p – 1)! + 1, où ! désigne la fonction factorielle ; comparer ceci avec le théorème de Wilson, qui énonce que tout nombre premier p divise (p – 1)! + 1. Les seuls nombres premiers de Wilson connus sont 5, 13, et 563 () ; si d'autres existent, ils doivent être plus grands que 2 × 10. On conjecture qu'il existe une infinité de nombres premiers de Wilson, et que le nombre de nombres premiers de Wilson dans un intervalle [x, y] est d'environ log(log(y)/log(x)).
Nombre complexe déployéEn mathématiques, les nombres complexes déployés ou fendus forment un anneau commutatif non-intègre, extension des nombres réels définis de manière analogue aux nombres complexes (usuels). La différence-clef entre les deux est que la multiplication des nombres complexes (usuels) respecte la norme euclidienne standard (carrée) : sur alors que la multiplication des nombres complexes déployés, quant à elle, respecte la norme de Minkowski ou norme lorentzienne (carrée) Les nombres complexes déployés ont beaucoup d'autres noms, voir la section des synonymes ci-dessous.
Conjuguévignette|Représentation géométrique (diagramme d'Argand) de z et de son conjugué z̅ dans le plan complexe. Le conjugué est obtenu par symétrie par l'axe des réels. En mathématiques, le conjugué d'un nombre complexe z est le nombre complexe formé de la même partie réelle que z mais de partie imaginaire opposée. Le conjugué d'un nombre complexe , où a et b sont nombres réels, est noté ou . Dans le plan, le point d'affixe est le symétrique du point d'affixe par rapport à l'axe des abscisses. Le module du conjugué reste inchangé.
Alexandre GrothendieckAlexandre Grothendieck, né Alexander Grothendieck (prononcé en allemand : ), est un mathématicien français, né le à Berlin et mort le à Saint-Lizier, près de Saint-Girons (Ariège). Il est resté longtemps apatride tout en vivant principalement en France ; il a acquis la nationalité française en 1971. Il est considéré comme le refondateur de la géométrie algébrique et, à ce titre, comme l'un des plus grands mathématiciens du . Il était connu pour son intuition extraordinaire et sa capacité de travail exceptionnelle.
Grothendieck categoryIn mathematics, a Grothendieck category is a certain kind of , introduced in Alexander Grothendieck's Tôhoku paper of 1957 in order to develop the machinery of homological algebra for modules and for sheaves in a unified manner. The theory of these categories was further developed in Pierre Gabriel's seminal thesis in 1962. To every algebraic variety one can associate a Grothendieck category , consisting of the quasi-coherent sheaves on .
Site (mathématiques)En théorie des catégories, une branche des mathématiques, une topologie de Grothendieck est une structure sur une catégorie permettant de voir certains objets de comme les ensembles ouverts d'un espace topologique. Une catégorie munie d'une topologie de Grothendieck est appelée un site. Une topologie de Grothendieck axiomatise la notion de recouvrement d'un espace topologique par des ouverts. Cela permet de généraliser la définition de faisceaux, et leur cohomologie, à un site quelconque.