Sciences de l'atmosphèreLes sciences de l'atmosphère désignent le terme général utilisé pour désigner l'étude de l'atmosphère, ses procédés, les effets que d'autres systèmes ont sur l'atmosphère, ainsi que les effets qu'a l'atmosphère sur ces mêmes systèmes. La météorologie inclut la chimie atmosphérique et la physique de l'atmosphère, et se concentre principalement sur les prévisions météorologiques.
Magnitude (astronomie)vignette|Sources lumineuses de différentes magnitudes. En astronomie, la magnitude est une mesure sans unité de la luminosité d'un objet céleste dans une bande de longueurs d'onde définie, souvent dans le spectre visible ou infrarouge. Une détermination imprécise mais systématique de la grandeur des objets est introduite dès le par Hipparque. L'échelle est logarithmique et définie de telle sorte que chaque pas d'une grandeur change la luminosité d'un facteur 2,5.
Vecteur contravariant, covariant et covecteurUn vecteur contravariant est un vecteur, un vecteur covariant est une forme linéaire, encore appelé covecteur, ou encore vecteur dual. Et si on dispose d'un produit scalaire, on peut représenter une forme linéaire (= un vecteur covariant = un covecteur) par un vecteur à l'aide du théorème de représentation de Riesz (cette représentation dépend du choix du produit scalaire).
Ordre de grandeurUn ordre de grandeur est un nombre qui représente de façon simplifiée mais approximative la mesure d'une grandeur physique. Ce nombre, le plus souvent une puissance de 10, est utilisé notamment pour communiquer sur des valeurs très grandes ou très petites, comme le diamètre du système solaire ou la charge d'un électron. L'ordre de grandeur se mémorise plus facilement qu'une valeur précise et suffit pour de nombreux usages. Il est également utile dans les domaines intermédiaires pour situer la taille d'un objet ou pour choisir la gamme d'appareils de mesure à lui appliquer.
Vecteur unitairevignette|Deux vecteurs unitaires dans un espace vectoriel normé. Dans un espace vectoriel normé (réel ou complexe) E, un vecteur unitaire est un vecteur dont la norme est égale à 1. Si le corps des scalaires est R, deux vecteurs unitaires v et w sont colinéaires si et seulement si v = w ou v = –w. Si le corps des scalaires est C, et si v est un vecteur unitaire de E, alors les vecteurs unitaires colinéaires à v sont αv où α est un complexe de module 1. Les vecteurs unitaires permettent de définir la direction et le sens d'un vecteur non nul de E.
Théorème de Taylorredresse=1.5|vignette|Représentation de la fonction logarithme (en noir) et des approximations de Taylor au point 1 (en vert). En mathématiques, plus précisément en analyse, le théorème de Taylor (ou formule de Taylor), du nom du mathématicien anglais Brook Taylor qui l'établit en 1715, montre qu'une fonction plusieurs fois dérivable au voisinage d'un point peut être approchée par une fonction polynomiale dont les coefficients dépendent uniquement des dérivées de la fonction en ce point.
Highway networkIn machine learning, the Highway Network was the first working very deep feedforward neural network with hundreds of layers, much deeper than previous artificial neural networks. It uses skip connections modulated by learned gating mechanisms to regulate information flow, inspired by Long Short-Term Memory (LSTM) recurrent neural networks. The advantage of a Highway Network over the common deep neural networks is that it solves or partially prevents the vanishing gradient problem, thus leading to easier to optimize neural networks.
Analyse en composantes principalesL'analyse en composantes principales (ACP ou PCA en anglais pour principal component analysis), ou, selon le domaine d'application, transformation de Karhunen–Loève (KLT) ou transformation de Hotelling, est une méthode de la famille de l'analyse des données et plus généralement de la statistique multivariée, qui consiste à transformer des variables liées entre elles (dites « corrélées » en statistique) en nouvelles variables décorrélées les unes des autres. Ces nouvelles variables sont nommées « composantes principales » ou axes principaux.
Fonction à valeurs vectoriellesEn mathématiques, une fonction à valeurs vectorielles ou fonction vectorielle est une fonction dont l'espace d'arrivée est un ensemble de vecteurs, son ensemble de définition pouvant être un ensemble de scalaires ou de vecteurs. Courbe paramétrée Un exemple classique de fonctions vectorielles est celui des courbes paramétrées, c'est-à-dire des fonctions d'une variable réelle (représentant par exemple le temps dans les applications en mécanique du point) à valeurs dans un espace euclidien, par exemple le plan usuel (on parle alors de courbes planes) ou l'espace usuel (on parle alors de courbes gauches).
Variance (mathématiques)vignette|Exemple d'échantillons pour deux populations ayant la même moyenne mais des variances différentes. La population en rouge a une moyenne de 100 et une variance de 100 (écart-type = SD = standard deviation = 10). La population en bleu a une moyenne de 100 et une variance de (écart-type = SD = 50). En statistique et en théorie des probabilités, la variance est une mesure de la dispersion des valeurs d'un échantillon ou d'une variable aléatoire.