Vibration moléculaireUne vibration moléculaire se produit lorsque les atomes d'une molécule sont dans un mouvement périodique pendant que la molécule dans son ensemble subit un mouvement de translation et de rotation. La fréquence du mouvement périodique est appelée fréquence de vibration. Une molécule non linéaire constituée de n atomes possède 3n-6 modes normaux de vibration, alors qu'une molécule linéaire n'en possède que 3n-5, puisque la rotation autour de son axe moléculaire ne peut être observée.
Géométrie moléculaireLa géométrie moléculaire ou structure moléculaire désigne l'arrangement 3D des atomes dans une molécule. . La géométrie moléculaire peut être établie à l'aide de différents outils, dont la spectroscopie et la diffraction. Les spectroscopies infrarouge, rotationnelle et Raman peuvent donner des informations relativement à la géométrie d'une molécule grâce aux absorbances vibrationnelles et rotationnelles. Les diffractométries de rayons X, de neutrons et des électrons peuvent donner des informations à propos des solides cristallins.
Symétrie moléculaireEn chimie, la symétrie moléculaire décrit la symétrie présente dans les molécules ainsi que la classification de ces molécules en fonctions de leur symétrie. La symétrie moléculaire est un concept fondamental en chimie car elle permet de prévoir ou d'expliquer un grand nombre des propriétés chimiques des molécules telles que les transitions spectroscopiques permises ou encore la présence ou l'absence d'un moment dipolaire.
Groupe ponctuel de symétrieEn géométrie, un groupe ponctuel de symétrie est un sous-groupe d'un groupe orthogonal : il est composé d'isométries, c'est-à-dire d'applications linéaires laissant invariants les distances et les angles. Le groupe ponctuel de symétrie d'une molécule est constitué des isométries qui laissent la molécule, en tant que forme géométrique, invariante. thumb|Figure 1 : exemple de rotation En cristallographie, un groupe ponctuel contient les opérations de symétrie qui laissent invariants la morphologie d’un cristal et ses propriétés physiques (la symétrie de la structure atomique d’un cristal est décrite par les groupes d’espace).
Point groups in three dimensionsIn geometry, a point group in three dimensions is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere. It is a subgroup of the orthogonal group O(3), the group of all isometries that leave the origin fixed, or correspondingly, the group of orthogonal matrices. O(3) itself is a subgroup of the Euclidean group E(3) of all isometries. Symmetry groups of geometric objects are isometry groups. Accordingly, analysis of isometry groups is analysis of possible symmetries.
Point groups in two dimensionsIn geometry, a two-dimensional point group or rosette group is a group of geometric symmetries (isometries) that keep at least one point fixed in a plane. Every such group is a subgroup of the orthogonal group O(2), including O(2) itself. Its elements are rotations and reflections, and every such group containing only rotations is a subgroup of the special orthogonal group SO(2), including SO(2) itself. That group is isomorphic to R/Z and the first unitary group, U(1), a group also known as the circle group.
Symétrie centralethumb|upright=0.7|Symétrie centrale plane dans une carte à jouer : sur la carte figure le roi de cœur et son symétrique par rapport au centre de cette dernière. En géométrie, une symétrie centrale est une transformation d'un espace affine. Elle se réalise à partir d'un point fixe noté Ω appelé centre de symétrie. Elle transforme tout point M en un point M' tel que le point Ω soit le milieu du segment [MM']. En termes de vecteurs, cela se traduit par : Comme toute symétrie, c'est une involution, c'est-à-dire qu'on retrouve le point ou la figure de départ si on l'applique deux fois.
Mode normaldroite|vignette|248px|Visualisation d'un mode normal de vibration d'une peau de tambour, constitué d'une membrane circulaire souple attachée rigidement sur la totalité de ses bords. . Pour un système oscillatoire à plusieurs degrés de liberté, un mode normal ou mode propre d'oscillation est une forme spatiale selon laquelle un système excitable (micro ou macroscopique) peut osciller après avoir été perturbé au voisinage de son état d'équilibre ; une fréquence naturelle de vibration est alors associée à cette forme.
Génération de seconde harmoniquevignette|Niveaux d'énergie impliqués dans la création de SHG La génération de seconde harmonique (GSH ou SHG en anglais, également appelé doublage de fréquence) est un phénomène d'optique non linéaire dans lequel des photons interagissant avec un matériau non linéaire sont combinés pour former de nouveaux photons avec le double de l'énergie, donc avec le double de la fréquence ou la moitié de la longueur d'onde des photons initiaux. La génération de seconde harmonique, en tant qu'effet optique non linéaire d'ordre pair, n'est autorisée que dans les milieux sans centre d'inversion .
Point groups in four dimensionsIn geometry, a point group in four dimensions is an isometry group in four dimensions that leaves the origin fixed, or correspondingly, an isometry group of a 3-sphere. 1889 Édouard Goursat, Sur les substitutions orthogonales et les divisions régulières de l'espace, Annales Scientifiques de l'École Normale Supérieure, Sér. 3, 6, (pp. 9–102, pp. 80–81 tetrahedra), Goursat tetrahedron 1951, A. C. Hurley, Finite rotation groups and crystal classes in four dimensions, Proceedings of the Cambridge Philosophical Society, vol.