Fonctionnelle de MinkowskiEn géométrie, la notion de jauge généralise celle de semi-norme. À toute partie C d'un R-espace vectoriel E on associe sa jauge, ou fonctionnelle de Minkowski p, qui est une application de E dans [0, +∞] mesurant, pour chaque vecteur, par quel rapport il faut dilater C pour englober ce vecteur. Dès que C contient l'origine, p est positivement homogène ; si C est étoilée par rapport p possède d'autres propriétés élémentaires. Si C est convexe — cas le plus souvent étudié — p est même sous-linéaire, mais elle n'est pas nécessairement symétrique et elle peut prendre des valeurs infinies.
Espace localement convexeEn mathématiques, un espace localement convexe est un espace vectoriel topologique dont la topologie peut être définie à l'aide d'une famille de semi-normes. C'est une généralisation de la notion d'espace normé. Un espace vectoriel topologique E est dit localement convexe s'il vérifie l'une des deux propriétés équivalentes suivantes : il existe une famille de semi-normes telle que la topologie de E est initiale pour l'ensemble d'applications ; le vecteur nul possède une base de voisinages formée de convexes.
DiplopieLa diplopie (ou double vision ; du grec diploos : « double » et ôps : « vue ») est la perception simultanée de deux images (vision double) d'un objet unique. La vision double peut se déplacer horizontalement, verticalement ou en diagonale. La diplopie peut négativement influencer l'équilibre, les mouvements et les capacités de lire chez un individu. Elle peut être monoculaire, c'est-à-dire qu'elle disparaît seulement à l'occlusion de l'œil malade, l'occlusion de l’œil sain ne la corrigeant pas.
Théorie de jaugeEn physique théorique, une théorie de jauge est une théorie des champs basée sur un groupe de symétrie locale, appelé groupe de jauge, définissant une « invariance de jauge ». Le prototype le plus simple de théorie de jauge est l'électrodynamique classique de Maxwell. L'expression « invariance de jauge » a été introduite en 1918 par le mathématicien et physicien Hermann Weyl. La première théorie des champs à avoir une symétrie de jauge était la formulation de l'électrodynamisme de Maxwell en 1864 dans .
Mesure physiqueLa mesure physique est l'action de déterminer la ou les valeurs d'une grandeur (longueur, capacité), par comparaison avec une grandeur constante de même espèce prise comme terme de référence (étalon ou unité). Selon la définition canonique : La mesure physique vise à l'objectivité et à la reproductibilité. La comparaison est numérique ; on exprime une caractéristique bien définie de l'objet par un nombre rationnel multipliant l'unité.
Transformations de GaliléeEn physique, une transformation de Galilée correspond aux formules de transformations des coordonnées spatiales et temporelle entre deux référentiels galiléens donnés. Tout référentiel en mouvement de translation rectiligne et uniforme par rapport à un référentiel donné supposé galiléen, est lui-même galiléen. Une telle transformation laisse invariantes les équations de la mécanique newtonienne, mais pas celles de la dynamique relativiste ou les équations de Maxwell.
Algorithme de rechercheEn informatique, un algorithme de recherche est un type d'algorithme qui, pour un domaine, un problème de ce domaine et des critères donnés, retourne en résultat un ensemble de solutions répondant au problème. Supposons que l'ensemble de ses entrées soit divisible en sous-ensemble, par rapport à un critère donné, qui peut être, par exemple, une relation d'ordre. De façon générale, un tel algorithme vérifie un certain nombre de ces entrées et retourne en sortie une ou plusieurs des entrées visées.
Programmation fonctionnelleLa programmation fonctionnelle est un paradigme de programmation de type déclaratif qui considère le calcul en tant qu'évaluation de fonctions mathématiques. Comme le changement d'état et la mutation des données ne peuvent pas être représentés par des évaluations de fonctions la programmation fonctionnelle ne les admet pas, au contraire elle met en avant l'application des fonctions, contrairement au modèle de programmation impérative qui met en avant les changements d'état.
Optimisation convexevignette|320x320px|Optimisation convexe dans un espace en deux dimensions dans un espace contraint L'optimisation convexe est une sous-discipline de l'optimisation mathématique, dans laquelle le critère à minimiser est convexe et l'ensemble admissible est convexe. Ces problèmes sont plus simples à analyser et à résoudre que les problèmes d'optimisation non convexes, bien qu'ils puissent être NP-difficile (c'est le cas de l'optimisation copositive). La théorie permettant d'analyser ces problèmes ne requiert pas la différentiabilité des fonctions.
AmblyopieL’amblyopie est une différence d'acuité visuelle entre les yeux, qui ne peut pourtant pas être expliquée par une lésion organique. Ce trouble semble affecter 2 à 5 % de la population. L'amblyopie est un trouble cortical : la partie du cerveau traitant l'information venant d'un œil ne fonctionne pas de manière optimale. Repérer l'amblyopie au plus tôt chez les enfants permet un traitement plus efficace. Ce mot vient du grec ancien / amblús (« obtus ») et / ópsis (« vue »), « œil obtus » (Plenk, 1788).