Holomorphic vector bundleIn mathematics, a holomorphic vector bundle is a complex vector bundle over a complex manifold X such that the total space E is a complex manifold and the projection map π : E → X is holomorphic. Fundamental examples are the holomorphic tangent bundle of a complex manifold, and its dual, the holomorphic cotangent bundle. A holomorphic line bundle is a rank one holomorphic vector bundle. By Serre's GAGA, the category of holomorphic vector bundles on a smooth complex projective variety X (viewed as a complex manifold) is equivalent to the category of algebraic vector bundles (i.
Univers de von NeumannEn théorie des ensembles, une des branches des mathématiques, l'univers de von Neumann, ou hiérarchie cumulative de von Neumann, est la classe notée V d'ensembles « héréditaires », tels que la relation d'appartenance sur ces ensembles soit bien fondée. Cette classe, qui est formalisée par la théorie des ensembles de Zermelo-Fraenkel (ZFC), est souvent utilisée pour fournir une interprétation ou une motivation des axiomes de ZFC. Ce concept est nommé d'après John von Neumann, bien qu'il ait été publié pour la première fois par Ernst Zermelo en 1930.
Géométrie de contactLa géométrie de contact est la partie de la géométrie différentielle qui étudie les formes et structures de contact. Elle entretient d'étroits liens avec la géométrie symplectique, la géométrie complexe, la théorie des feuilletages de codimension 1 et les systèmes dynamiques. La géométrie de contact classique est née de l'étude de la thermodynamique et de l'optique géométrique. Une structure de contact sur une variété est un champ d'hyperplans c'est-à-dire la donnée, en tout point de la variété, d'un hyperplan dans l'espace tangent.
Espace de modulesEn mathématiques, un espace de modules est un espace paramétrant les diverses classes d'objets sous une relation d'équivalence ; l'intérêt est de pouvoir alors munir naturellement ces espaces de classes d'une structure supplémentaire. L'archétype de cette situation est la classification des courbes elliptiques par les points d'une courbe modulaire. Autre exemple : en géométrie différentielle, l'espace de modules d'une variété est l'espace des paramètres définissant la géométrie modulo les difféomorphismes locaux et globaux.
Surface de RiemannEn géométrie différentielle et géométrie analytique complexe, une surface de Riemann est une variété complexe de dimension 1. Cette notion a été introduite par Bernhard Riemann pour prendre en compte les singularités et les complications topologiques qui accompagnent certains prolongements analytiques de fonctions holomorphes. Par oubli de structure, une surface de Riemann se présente comme une variété différentielle réelle de dimension 2, d'où le nom surface. Elles ont été nommées en hommage au mathématicien allemand Bernhard Riemann.
Formule des traces de SelbergEn mathématiques, la formule des traces de Selberg est un résultat central en analyse harmonique non commutative. Elle fournit une expression pour la trace de certains opérateurs intégraux ou différentiels agissant sur des espaces de fonctions sur un espace homogène G/Γ, où G est un groupe de Lie et Γ un groupe discret, ou plus généralement sur un double quotient H\G/Γ. Un cas particulier important est celui où l'espace est une surface de Riemann compacte S.
Série de LambertEn mathématiques, une série de Lambert, nommée ainsi en l'honneur du mathématicien Jean-Henri Lambert, est une série génératrice prenant la forme Elle peut être resommée formellement en développant le dénominateur : où les coefficients de la nouvelle série sont donnés par la convolution de Dirichlet de (a) avec la fonction constante 1(n) = 1 : La série de Lambert de certaines fonctions multiplicatives se calcule facilement ; par exemple : la série de Lambert de la fonction de Möbius μ est la série génératri
Variété abélienneEn mathématiques, et en particulier, en géométrie algébrique et géométrie complexe, une variété abélienne A est une variété algébrique projective qui est un groupe algébrique. La condition de est l'équivalent de la compacité pour les variétés différentielles ou analytiques, et donne une certaine rigidité à la structure. C'est un objet central en géométrie arithmétique. Une variété abélienne sur un corps k est un groupe algébrique A sur k, dont la variété algébrique sous-jacente est projective, connexe et géométriquement réduite.
Canonical bundleIn mathematics, the canonical bundle of a non-singular algebraic variety of dimension over a field is the line bundle , which is the nth exterior power of the cotangent bundle on . Over the complex numbers, it is the determinant bundle of the holomorphic cotangent bundle . Equivalently, it is the line bundle of holomorphic n-forms on . This is the dualising object for Serre duality on . It may equally well be considered as an invertible sheaf.
Théorème de l'application conformeEn mathématiques, et plus précisément en analyse complexe, le théorème de l'application conforme, dû à Bernhard Riemann, assure que toutes les parties ouvertes simplement connexes du plan complexe qui ne sont ni vides ni égales au plan tout entier sont conformes entre elles. Le théorème fut énoncé (sous l'hypothèse plus forte d'une frontière formés d'arcs différentiables) par Bernhard Riemann dans sa thèse, en 1851.