Analyse harmonique (mathématiques)thumb|upright=1.2|Analyseur harmonique mécanique de Lord Kelvin datant de 1878. L'analyse harmonique est la branche des mathématiques qui étudie la représentation des fonctions ou des signaux comme superposition d'ondes de base. Elle approfondit et généralise les notions de série de Fourier et de transformée de Fourier. Les ondes de base s'appellent les harmoniques, d'où le nom de la discipline.
État de surface (mécanique)En mécanique, l'état de surface est un élément de cotation d'une pièce indiquant la fonction, la rugosité, et l'aspect des surfaces usinées. En Spécification Géométrique des Produits (GPS), on distingue seize fonctions principales que peut remplir la surface d'une pièce mécanique : Surface de contact avec une autre pièce : frottement de glissement lubrifié (FG) ; frottement à sec (FS) ; frottement de roulement (FR) ; frottement fluide (FF) ; résistance au matage (RM) ; étanchéité dynamique avec ou sans joint (ED) ; étanchéité statique avec ou sans joint (ES) ; ajustement fixe avec contrainte (AC) ; adhérence, collage (AD).
Série harmonique (musique)En acoustique musicale et en psychoacoustique, une série harmonique est la série des partiels harmoniques qui composent un son périodique complexe. Les instruments de musique à hauteur déterminée (par opposition aux instruments à hauteur indéterminée) sont souvent basés sur un résonateur acoustique tel qu'une corde ou une colonne d'air, qui oscille dans de nombreux modes propres simultanément. Aux fréquences de chaque mode de vibration, des ondes se propagent dans les deux sens le long de la corde ou de la colonne d'air, se renforçant et s'annulant mutuellement pour former des ondes stationnaires.
Calcul numérique d'une intégraleEn analyse numérique, il existe une vaste famille d’algorithmes dont le but principal est d’estimer la valeur numérique de l’intégrale définie sur un domaine particulier pour une fonction donnée (par exemple l’intégrale d’une fonction d’une variable sur un intervalle). Ces techniques procèdent en trois phases distinctes : Décomposition du domaine en morceaux (un intervalle en sous-intervalles contigus) ; Intégration approchée de la fonction sur chaque morceau ; Sommation des résultats numériques ainsi obtenus.
Surface finishSurface finish, also known as surface texture or surface topography, is the nature of a surface as defined by the three characteristics of lay, surface roughness, and waviness. It comprises the small, local deviations of a surface from the perfectly flat ideal (a true plane). Surface texture is one of the important factors that control friction and transfer layer formation during sliding. Considerable efforts have been made to study the influence of surface texture on friction and wear during sliding conditions.
Intégration (mathématiques)En mathématiques, l'intégration ou calcul intégral est l'une des deux branches du calcul infinitésimal, l'autre étant le calcul différentiel. Les intégrales sont utilisées dans de multiples disciplines scientifiques notamment en physique pour des opérations de mesure de grandeurs (longueur d'une courbe, aire, volume, flux) ou en probabilités. Ses utilités pluridisciplinaires en font un outil scientifique fondamental. C'est la raison pour laquelle l'intégration est souvent abordée dès l'enseignement secondaire.
PlasmonDans un métal, un plasmon est une oscillation de plasma quantifiée, ou un quantum d'oscillation de plasma. Le plasmon est une quasiparticule résultant de la quantification de fréquence plasma, tout comme le photon et le phonon sont des quantifications de vibrations respectivement lumineuses et mécaniques. Ainsi, les plasmons sont des oscillations collectives d'un gaz d'électrons, par exemple à des fréquences optiques. Le couplage d'un plasmon et d'un photon crée une autre quasiparticule dite plasma polariton.
Oscillateur harmonique quantiqueL'oscillateur harmonique quantique correspond au traitement par les outils de la mécanique quantique de l'oscillateur harmonique classique. De façon générale, un oscillateur est un système dont l'évolution dans le temps est périodique. Il est dit de plus harmonique si les oscillations effectuées sont sinusoïdales, avec une amplitude et une fréquence qui ne dépendent que des caractéristiques intrinsèques du système et des conditions initiales.
Plasmonic metamaterialA plasmonic metamaterial is a metamaterial that uses surface plasmons to achieve optical properties not seen in nature. Plasmons are produced from the interaction of light with metal-dielectric materials. Under specific conditions, the incident light couples with the surface plasmons to create self-sustaining, propagating electromagnetic waves known as surface plasmon polaritons (SPPs). Once launched, the SPPs ripple along the metal-dielectric interface. Compared with the incident light, the SPPs can be much shorter in wavelength.
Oscillateur harmoniqueUn oscillateur harmonique est un oscillateur idéal dont l'évolution au cours du temps est décrite par une fonction sinusoïdale, dont la fréquence ne dépend que des caractéristiques du système et dont l'amplitude est constante. Ce modèle mathématique décrit l'évolution de n'importe quel système physique au voisinage d'une position d'équilibre stable, ce qui en fait un outil transversal utilisé dans de nombreux domaines : mécanique, électricité et électronique, optique. Il néglige les forces dissipatives (frottement par exemple).