Planification motriceLa planification motrice est un processus cognitif et psychomoteur, permettant d’élaborer un mouvement volontaire et de l’organiser en séquences avant de l’exécuter . Pour ce faire, avant chaque mouvement, le cerveau établit un plan moteur composé d’images mentales qui s’enchaînent . Cela est possible parce qu’il s’agit d’un automatisme qui anticipe le résultat de chaque mouvement. Lors de l’étape suivante, le cerveau spécifie les paramètres du mouvement, c’est-à-dire les éléments spatio-temporels (direction, force, amplitude, vitesse) et visuo-spatiaux qui orienteront l’action .
Réflexion glisséeEn géométrie euclidienne, une réflexion glissée du plan euclidien est une isométrie affine de ce plan, constituée de la composée d'une réflexion par rapport à une droite et d'une translation dans la direction de cette droite. Cette composition est ici commutative. Plus généralement, dans un espace euclidien quelconque, une réflexion glissée est la composée d'une réflexion par rapport à un hyperplan et d'une translation parallèlement à cet hyperplan. Réflexion (mathématiques) Symétrie (transformation géomét
Groupe d'espaceLe groupe d'espace d'un cristal est constitué par l'ensemble des symétries d'une structure cristalline, c'est-à-dire l'ensemble des isométries affines laissant la structure invariante. Il s'agit d'un groupe au sens mathématique du terme. Tout groupe d'espace résulte de la combinaison d'un réseau de Bravais et d'un groupe ponctuel de symétrie : toute symétrie de la structure résulte du produit d'une translation du réseau et d'une transformation du groupe ponctuel. La notation de Hermann-Mauguin est utilisée pour représenter un groupe d'espace.
Contrôle moteurEn neurosciences, le contrôle moteur est la capacité de faire des ajustements posturaux dynamiques et de diriger le corps et les membres dans le but de faire un mouvement déterminé. Le mouvement volontaire est initié par le cortex moteur primaire et le cortex prémoteur. Le signal est ensuite transmis aux circuits du tronc cérébral et de la moelle épinière qui activent les muscles squelettiques qui, en se contractant, produisent un mouvement. Le mouvement produit renvoie des informations proprioceptives au système nerveux central (SNC).
Groupe de papier peintUn groupe de papier peint (ou groupe d'espace bidimensionnel, ou groupe cristallographique du plan) est un groupe mathématique constitué par l'ensemble des symétries d'un motif bidimensionnel périodique. De tels motifs, engendrés par la répétition (translation) à l'infini d'une forme dans deux directions du plan, sont souvent utilisés en architecture et dans les arts décoratifs. Il existe 17 types de groupes de papier peint, qui permettent une classification mathématique de tous les motifs bidimensionnels périodiques.
Groupe de friseUn groupe de frise, en mathématiques, est un sous-groupe du groupe des isométries affines du plan euclidien tel que l'ensemble des translations qu'il contient forme lui-même un groupe isomorphe au groupe Z des entiers relatifs. Une frise est alors une partie du plan telle que l'ensemble des isométries qui la laissent globalement invariante est un groupe de frise. Usuellement, une frise est représentée par un motif se répétant périodiquement dans une direction donnée. Ce concept modélise les frises utilisées en architecture ou en décoration.
Isométrie affineUne isométrie affine est une transformation bijective d'un espace affine euclidien dans un autre qui est à la fois une application affine et une isométrie (c'est-à-dire une bijection conservant les distances). Si cette isométrie conserve aussi l'orientation, on dit que c'est un déplacement. Si elle inverse l'orientation, il s'agit d'un antidéplacement. Les déplacements sont les composés de translations et rotations. Les réflexions sont des antidéplacements. On désigne par le plan (, plus précisément, un plan affine réel euclidien).
Symétrie (transformation géométrique)Une symétrie géométrique est une transformation géométrique involutive qui conserve le parallélisme. Parmi les symétries courantes, on peut citer la réflexion et la symétrie centrale. Une symétrie géométrique est un cas particulier de symétrie. Il existe plusieurs sortes de symétries dans le plan ou dans l’espace. Remarque : Le terme de symétrie possède aussi un autre sens en mathématiques. Dans l'expression groupe de symétrie, une symétrie désigne une isométrie quelconque.
Cortex moteurLe cortex moteur désigne l'ensemble des aires du cortex cérébral qui participent à la planification, au contrôle et à l'exécution des mouvements volontaires des muscles du corps. D'un point de vue anatomique, le cortex moteur est situé dans la partie postérieure du lobe frontal, au niveau de la région caudale de la circonvolution frontale ascendante en avant du sillon central. Le cortex moteur est en interaction constante avec d'autres structures nerveuses impliquées dans le mouvement comme le système des ganglions de la base et le cervelet.
Quantification (logique)vignette|Symboles mathématiques des deux quantificateurs logiques les plus courants.|236px En mathématiques, les expressions « pour tout » (ou « quel que soit ») et « il existe », utilisées pour formuler des propositions mathématiques dans le calcul des prédicats, sont appelées des quantifications. Les symboles qui les représentent en langage formel sont appelés des quantificateurs (ou autrefois des quanteurs). La quantification universelle (« pour tout ... » ou « quel que soit ... ») se dénote par le symbole ∀ (un A à l'envers).