Roulement mécaniqueEn mécanique, un roulement est un dispositif destiné à guider un assemblage en rotation, c'est-à-dire à permettre à une pièce de tourner par rapport à une autre selon un axe de rotation défini. Le roulement est donc un palier. Par rapport aux paliers lisses, le roulement permet d'avoir une très faible résistance au pivotement tout en supportant des efforts importants. Nous pouvons en trouver dans les machines à café, les skateboards, les trottinettes, les voitures... Le premier roulement mécanique connu date du .
Fluid bearingFluid bearings are bearings in which the load is supported by a thin layer of rapidly moving pressurized liquid or gas between the bearing surfaces. Since there is no contact between the moving parts, there is no sliding friction, allowing fluid bearings to have lower friction, wear and vibration than many other types of bearings. Thus, it is possible for some fluid bearings to have near-zero wear if operated correctly. They can be broadly classified into two types: fluid dynamic bearings (also known as hydrodynamic bearings) and hydrostatic bearings.
Palier lisseUn palier lisse assure le guidage en rotation par glissement. Il est dépourvu d'éléments interposés, contrairement au roulement, dont le guidage est assuré par un ou plusieurs éléments roulants. Le terme anglais bearing désigne les deux types donc la confusion n'est pas rare dans les documents traduits. vignette|Exemple de palier lisse. Surface d'un arbre ou dans un alésage, ou pièce intercalée entre eux, permettant un glissement relatif l'un par rapport à l'autre avec un minimum d'usure et de frottement.
Palier (mécanique)vignette|210x210px|Représentation 3D d'un palier lisse. Les paliers sont des organes utilisés en construction mécanique pour supporter et guider, en rotation, des arbres de transmission. Suivant l’usage désiré, ces paliers peuvent être : lisses, où les arbres qui reposent sur des coussinets sont soumis au frottement de glissement entre les surfaces en contact ; à roulement, où le contact s’effectue par l’intermédiaire de billes, d'aiguilles ou de rouleaux contenus dans des cages.
Interpolation numériqueEn analyse numérique (et dans son application algorithmique discrète pour le calcul numérique), l'interpolation est une opération mathématique permettant de remplacer une courbe ou une fonction par une autre courbe (ou fonction) plus simple, mais qui coïncide avec la première en un nombre fini de points (ou de valeurs) donnés au départ. Suivant le type d'interpolation, outre le fait de coïncider en un nombre fini de points ou de valeurs, il peut aussi être demandé à la courbe ou à la fonction construite de vérifier des propriétés supplémentaires.
Nucleic acid double helixIn molecular biology, the term double helix refers to the structure formed by double-stranded molecules of nucleic acids such as DNA. The double helical structure of a nucleic acid complex arises as a consequence of its secondary structure, and is a fundamental component in determining its tertiary structure. The term entered popular culture with the publication in 1968 of The Double Helix: A Personal Account of the Discovery of the Structure of DNA by James Watson.
Interpolation polynomialeEn mathématiques, en analyse numérique, l'interpolation polynomiale est une technique d'interpolation d'un ensemble de données ou d'une fonction par un polynôme. En d'autres termes, étant donné un ensemble de points (obtenu, par exemple, à la suite d'une expérience), on cherche un polynôme qui passe par tous ces points, p(xi) = yi, et éventuellement vérifie d'autres conditions, de degré si possible le plus bas. Cependant, dans le cas de l'interpolation lagrangienne, par exemple, le choix des points d'interpolation est critique.
Polynôme de TchebychevEn mathématiques, un polynôme de Tchebychev est un terme de l'une des deux suites de polynômes orthogonaux particulières reliées à la formule de Moivre. Les polynômes de Tchebychev sont nommés ainsi en l'honneur du mathématicien russe Pafnouti Lvovitch Tchebychev. Il existe deux suites de polynômes de Tchebychev, l'une nommée polynômes de Tchebychev de première espèce et notée T et l'autre nommée polynômes de Tchebychev de seconde espèce et notée U (dans les deux cas, l'entier naturel n correspond au degré).
Polynôme de LaguerreEn mathématiques, les polynômes de Laguerre, nommés d'après Edmond Laguerre, sont les solutions normalisées de l'équation de Laguerre : qui est une équation différentielle linéaire homogène d'ordre 2 et se réécrit sous la forme de Sturm-Liouville : Cette équation a des solutions non singulières seulement si n est un entier positif. Les solutions L forment une suite de polynômes orthogonaux dans L (R, edx), et la normalisation se fait en leur imposant d'être de norme 1, donc de former une famille orthonormale.
Interpolation au plus proche voisinLinterpolation au plus proche voisin (ou interpolation arrondie) est une méthode simple d'interpolation numérique d'un ensemble de points en dimension 1 ou supérieure (interpolation multivariée). Le problème de l'interpolation consiste à calculer une valeur approchée d'une fonction en un point quelconque à partir des valeurs de la fonction données en des points définis. L'algorithme du plus proche voisin détermine la valeur recherchée comme étant égale à la valeur au point le plus proche, sans considérer les autres valeurs connues, construisant ainsi une fonction constante par morceaux.