Differentiable curveDifferential geometry of curves is the branch of geometry that deals with smooth curves in the plane and the Euclidean space by methods of differential and integral calculus. Many specific curves have been thoroughly investigated using the synthetic approach. Differential geometry takes another path: curves are represented in a parametrized form, and their geometric properties and various quantities associated with them, such as the curvature and the arc length, are expressed via derivatives and integrals using vector calculus.
Section d'un fibréEn topologie, une section d'un fibré sur un espace topologique est une fonction continue telle que pour tout point de . Toute section est injective. Une section est une généralisation de la notion de graphe d'une fonction. Le graphe d'une fonction g : X → Y peut être identifié à une fonction prenant ses valeurs dans le produit cartésien E = X×Y de X et Y: Une section est une caractérisation abstraite de ce qu'est un graphe. Soit π : E → X la projection sur le premier facteur du produit cartésien: π(x,y) = x.
Fibré principalEn topologie, de manière informelle, un fibré principal sur un espace topologique X est un espace ressemblant localement à un produit de X par un groupe topologique. En particulier, un fibré principal est un espace fibré, mais c'est bien plus encore. Il est muni d'un groupe, le groupe structural, décrivant la manière dont les trivialisations locales se recollent entre elles. La théorie des fibrés principaux recouvre la théorie des fibrés vectoriels, de leurs orientations, de leurs structures riemanniennes, de leurs structures symplectiques, etc.
Connection (principal bundle)In mathematics, and especially differential geometry and gauge theory, a connection is a device that defines a notion of parallel transport on the bundle; that is, a way to "connect" or identify fibers over nearby points. A principal G-connection on a principal G-bundle P over a smooth manifold M is a particular type of connection which is compatible with the action of the group G. A principal connection can be viewed as a special case of the notion of an Ehresmann connection, and is sometimes called a principal Ehresmann connection.
Espace de modulesEn mathématiques, un espace de modules est un espace paramétrant les diverses classes d'objets sous une relation d'équivalence ; l'intérêt est de pouvoir alors munir naturellement ces espaces de classes d'une structure supplémentaire. L'archétype de cette situation est la classification des courbes elliptiques par les points d'une courbe modulaire. Autre exemple : en géométrie différentielle, l'espace de modules d'une variété est l'espace des paramètres définissant la géométrie modulo les difféomorphismes locaux et globaux.
Géométrie différentielle des surfacesEn mathématiques, la géométrie différentielle des surfaces est la branche de la géométrie différentielle qui traite des surfaces (les objets géométriques de l'espace usuel E3, ou leur généralisation que sont les variétés de dimension 2), munies éventuellement de structures supplémentaires, le plus souvent une métrique riemannienne. Outre les surfaces classiques de la géométrie euclidienne (sphères, cônes, cylindres, etc.
Fibré associéEn géométrie différentielle, un fibré associé est un fibré qui est induit par un -fibré principal et une action du groupe structurel sur un espace auxiliaire. Soient : un groupe de Lie ; une variété différentielle ; un -fibré principal sur ; l'action de groupe à droite de sur ; une action de groupe à gauche de sur une variété différentielle . Définition Le fibré associé à pour est le fibré où est défini par : où la relation d'équivalence est : Remarques Les fibres de sont de fibre type .
Fibré vectorielEn topologie différentielle, un fibré vectoriel est une construction géométrique ayant une parenté avec le produit cartésien, mais apportant une structure globale plus riche. Elle fait intervenir un espace topologique appelé base et un espace vectoriel modèle appelé fibre modèle. À chaque point de la base est associée une fibre copie de la fibre modèle, l'ensemble formant un nouvel espace topologique : l'espace total du fibré. Celui-ci admet localement la structure d'un produit cartésien de la base par la fibre modèle, mais peut avoir une topologie globale plus compliquée.
FibréEn mathématiques, un espace fibré est, intuitivement, un espace topologique qui est localement le produit de deux espaces — appelés la base et la fibre — mais en général pas globalement. Par exemple, le ruban de Möbius est un fibré de base un cercle et de fibre un segment de droite : il ressemble localement au produit d'un cercle par un segment, mais pas globalement comme le cylindre Plus précisément, l'espace total du fibré est muni d'une projection continue sur la base, telle que la de chaque point soit homéomorphe à la fibre.
Circle bundleIn mathematics, a circle bundle is a fiber bundle where the fiber is the circle . Oriented circle bundles are also known as principal U(1)-bundles. In physics, circle bundles are the natural geometric setting for electromagnetism. A circle bundle is a special case of a sphere bundle. Circle bundles over surfaces are an important example of 3-manifolds. A more general class of 3-manifolds is Seifert fiber spaces, which may be viewed as a kind of "singular" circle bundle, or as a circle bundle over a two-dimensional orbifold.