Produit tensorielEn mathématiques, le produit tensoriel est un moyen commode de coder les objets multilinéaires. Il est utilisé en algèbre, en géométrie différentielle, en géométrie riemannienne, en analyse fonctionnelle et en physique (mécanique des solides, relativité générale et mécanique quantique). Théorème et définition. Soient et deux espaces vectoriels sur un corps commutatif .
TenseurEn mathématiques, plus précisément en algèbre multilinéaire et en géométrie différentielle, un tenseur est un objet très général, dont la valeur s'exprime dans un espace vectoriel. On peut l'utiliser entre autres pour représenter des applications multilinéaires ou des multivecteurs.
Tenseur (mathématiques)Les tenseurs sont des objets mathématiques issus de l'algèbre multilinéaire permettant de généraliser les scalaires et les vecteurs. On les rencontre notamment en analyse vectorielle et en géométrie différentielle fréquemment utilisés au sein de champs de tenseurs. Ils sont aussi utilisés en mécanique des milieux continus. Le présent article ne se consacre qu'aux tenseurs dans des espaces vectoriels de dimension finie, bien que des généralisations en dimension infinie et même pour des modules existent.
Mixed tensorIn tensor analysis, a mixed tensor is a tensor which is neither strictly covariant nor strictly contravariant; at least one of the indices of a mixed tensor will be a subscript (covariant) and at least one of the indices will be a superscript (contravariant). A mixed tensor of type or valence , also written "type (M, N)", with both M > 0 and N > 0, is a tensor which has M contravariant indices and N covariant indices. Such a tensor can be defined as a linear function which maps an (M + N)-tuple of M one-forms and N vectors to a scalar.
Contraction tensorielleEn algèbre multilinéaire, la contraction est un procédé de calcul sur les tenseurs faisant intervenir la dualité. En coordonnées elle se représente de façon très simple en utilisant les notations d'Einstein et consiste à faire une somme sur un indice muet. Il est possible de contracter un tenseur unique de rang p en un tenseur de rang p-2, par exemple en calculant la trace d'une matrice. Il est possible également de contracter deux tenseurs, ce qui généralise la notion de produit matriciel.
Tensor decompositionIn multilinear algebra, a tensor decomposition is any scheme for expressing a "data tensor" (M-way array) as a sequence of elementary operations acting on other, often simpler tensors. Many tensor decompositions generalize some matrix decompositions. Tensors are generalizations of matrices to higher dimensions (or rather to higher orders, i.e. the higher number of dimensions) and can consequently be treated as multidimensional fields.
Anarchisme individualistevignette|Le drapeau noir, symbole de l'anarchisme peu importe son courant. Lanarchisme individualiste, ou individualisme libertaire, est un courant de l'anarchisme qui prône la liberté des choix de l'individu face à ceux, généralement imposés, d'un groupe social. On emploie généralement le terme d'anarchisme individualiste dans un souci de distinction avec l'acception courante de l'égoïsme. Dans ce cadre, l'égoïsme est la doctrine de l’ego, de la primauté donc de l'individu et de son expérience sur tout autres concepts.
Variété (géométrie)En mathématiques, et plus particulièrement en géométrie, la notion de variété peut être appréhendée intuitivement comme la généralisation de la classification qui établit qu'une courbe est une variété de dimension 1 et une surface est une variété de dimension 2. Une variété de dimension n, où n désigne un entier naturel, est un espace topologique localement euclidien, c'est-à-dire dans lequel tout point appartient à une région qui s'apparente à un tel espace.
Variété différentielleEn mathématiques, les variétés différentielles ou variétés différentiables sont les objets de base de la topologie différentielle et de la géométrie différentielle. Il s'agit de variétés, « espaces courbes » localement modelés sur l'espace euclidien de dimension n, sur lesquelles il est possible de généraliser une bonne part des opérations du calcul différentiel et intégral. Une variété différentielle se définit donc d'abord par la donnée d'une variété topologique, espace topologique localement homéomorphe à l'espace R.
Tenseur symétriqueUn tenseur d'ordre 2 est dit symétrique si la forme bilinéaire associée est symétrique. Un tenseur d'ordre 2 étant défini par rapport à un certain espace vectoriel, on peut y choisir des vecteurs de base et le tenseur est alors représenté par une matrice de composantes . Une définition équivalente à la précédente consiste à dire que la matrice est symétrique, c'est-à-dire que : pour tout couple d'indices i et j, car cette propriété reste inchangée si l'on change de base.