Calotte sphériquethumb|Une sphère et les deux calottes sphériques découpées par un plan En géométrie, une calotte sphérique est une portion de sphère délimitée par un plan. C'est un cas particulier de zone sphérique. Lorsque le plan passe par le centre de la sphère, on obtient un hémisphère. Cette surface de révolution sert de délimitant à deux types de solides : le secteur sphérique, portion de boule découpée par un cône le segment sphérique à une base, portion de boule découpée par un plan.
Sphèrevignette|Rendu en fil de fer d'une sphère dans un espace euclidien. En géométrie dans l'espace, une sphère est une surface constituée de tous les points situés à une même distance d'un point appelé centre. La valeur de cette distance au centre est le rayon de la sphère. La géométrie sphérique est la science qui étudie les propriétés des sphères. La surface de la Terre peut, en première approximation, être modélisée par une sphère dont le rayon est d'environ .
Segment sphériqueEn géométrie, un segment sphérique est le solide défini en coupant une boule avec une paire de plans parallèles. La surface du segment sphérique à l'exclusion des bases est appelée zone sphérique. Le segment sphérique est donc la partie de l’espace limitée par une zone sphérique et deux disques. Si le rayon de la sphère est appelé R, les rayons des bases des segments sphériques sont r1 et r2 et la hauteur du segment sphérique (la distance d'un plan parallèle à l'autre) appelée h, alors le volume du segment sphérique est : Lorsqu'un des plans est tangent à la sphère, on parle de segment sphérique à une base.
Coordonnées sphériquesvignette|Illustration de la convention de l'article. La position du point P est définie par la distance et par les angles (colatitude) et (longitude).|alt= On appelle coordonnées sphériques divers systèmes de coordonnées orthogonales de l'espace analogues aux coordonnées polaires du plan. Un point de l'espace est repéré dans ces systèmes par la distance à une origine (le pôle) et par deux angles. Ils sont d'emploi courant pour le repérage géographique : l'altitude, la latitude et la longitude sont une variante de ces coordonnées.
Secteur sphériqueEn géométrie, un secteur sphérique est une portion de sphère - plus exactement de boule - délimitée par un demi-cône de révolution dont le sommet coïncide avec le centre de la sphère. C'est un solide de révolution dont la frontière est constituée d'une portion de cône et d'une calotte sphérique. Plus précisément, le demi-cône découpe dans la boule deux solides, l'un, convexe, dont le volume est inférieur à une demi-boule est appelé secteur mineur, l'autre est appelé secteur majeur.
Spherical conicIn mathematics, a spherical conic or sphero-conic is a curve on the sphere, the intersection of the sphere with a concentric elliptic cone. It is the spherical analog of a conic section (ellipse, parabola, or hyperbola) in the plane, and as in the planar case, a spherical conic can be defined as the locus of points the sum or difference of whose great-circle distances to two foci is constant. By taking the antipodal point to one focus, every spherical ellipse is also a spherical hyperbola, and vice versa.
Trigonométrie sphériqueLa trigonométrie sphérique est un ensemble de relations analogues à celles de la trigonométrie euclidienne mais portant sur les angles et distances repérés sur une sphère. La figure de base est le triangle sphérique, délimité non plus par des segments de droites mais par des arcs de demi-grands cercles de cette sphère. Les règles habituelles de la trigonométrie euclidienne ne sont pas applicables ; par exemple la somme des angles d'un triangle situé sur une sphère, s'ils sont exprimés en degrés, est supérieure à 180 degrés.
Prévision numérique du tempsLa prévision numérique du temps (PNT) est une application de la météorologie et de l'informatique. Elle repose sur le choix d'équations mathématiques offrant une proche approximation du comportement de l'atmosphère réelle. Ces équations sont ensuite résolues, à l'aide d'un ordinateur, pour obtenir une simulation accélérée des états futurs de l'atmosphère. Le logiciel mettant en œuvre cette simulation est appelé un modèle de prévision numérique du temps.
Regular icosahedronIn geometry, a regular icosahedron (ˌaɪkɒsəˈhiːdrən,-kə-,-koʊ- or aɪˌkɒsəˈhiːdrən) is a convex polyhedron with 20 faces, 30 edges and 12 vertices. It is one of the five Platonic solids, and the one with the most faces. It has five equilateral triangular faces meeting at each vertex. It is represented by its Schläfli symbol {3,5}, or sometimes by its vertex figure as 3.3.3.3.3 or 35. It is the dual of the regular dodecahedron, which is represented by {5,3}, having three pentagonal faces around each vertex.
Produit tensorielEn mathématiques, le produit tensoriel est un moyen commode de coder les objets multilinéaires. Il est utilisé en algèbre, en géométrie différentielle, en géométrie riemannienne, en analyse fonctionnelle et en physique (mécanique des solides, relativité générale et mécanique quantique). Théorème et définition. Soient et deux espaces vectoriels sur un corps commutatif .