Bêta (physique des plasmas)The beta of a plasma, symbolized by β, is the ratio of the plasma pressure (p = n kB T) to the magnetic pressure (pmag = B2/2μ0). The term is commonly used in studies of the Sun and Earth's magnetic field, and in the field of fusion power designs. In the fusion power field, plasma is often confined using strong magnets. Since the temperature of the fuel scales with pressure, reactors attempt to reach the highest pressures possible. The costs of large magnets roughly scales like β1⁄2.
MagnétohydrodynamiqueLa magnétohydrodynamique (MHD) est une discipline scientifique qui décrit le comportement d'un fluide conducteur du courant électrique en présence de champs électromagnétiques. Elle s'applique notamment aux plasmas, au noyau externe et même à l'eau de mer. C'est une généralisation de l'hydrodynamique (appelée plus communément dynamique des fluides, définie par les équations de Navier-Stokes) couplée à l'électromagnétisme (équations de Maxwell).
État plasmathumb|upright|Le soleil est une boule de plasma. thumb|Lampe à plasma.|168x168px thumb|upright|Les flammes de haute température sont des plasmas. L'état plasma est un état de la matière, tout comme l'état solide, l'état liquide ou l'état gazeux, bien qu'il n'y ait pas de transition brusque pour passer d'un de ces états au plasma ou réciproquement. Il est visible sur Terre, à l'état naturel, le plus souvent à des températures élevées favorables aux ionisations, signifiant l’arrachement d'électrons aux atomes.
Cycle solairevignette|Courbe de 3 cycles solaires Un cycle solaire est une période pendant laquelle l'activité du Soleil varie en reproduisant les mêmes phénomènes que pendant la période de même durée précédente. Cette activité solaire se caractérise par l'intensité du champ magnétique du Soleil et par le nombre de taches à sa surface. Vue de la Terre, l'influence du Soleil varie principalement selon une période journalière et annuelle. Dans l'absolu, l'activité est réglée par un d'une période moyenne de – d'un maximum au suivant – mais la durée peut varier entre .
Géométrie différentielle des surfacesEn mathématiques, la géométrie différentielle des surfaces est la branche de la géométrie différentielle qui traite des surfaces (les objets géométriques de l'espace usuel E3, ou leur généralisation que sont les variétés de dimension 2), munies éventuellement de structures supplémentaires, le plus souvent une métrique riemannienne. Outre les surfaces classiques de la géométrie euclidienne (sphères, cônes, cylindres, etc.
Mode de transportvignette|Autobus utilisant le Washington State Ferry Un mode de transport est une forme particulière de transport qui se distingue principalement par le véhicule utilisé, et par conséquent par l'infrastructure qu'il met en œuvre. vignette|Transport par les airs et par la terre (page illustrative de The How and Why Library, 1909).
Espace projectifEn mathématiques, un espace projectif est le résultat d'une construction fondamentale qui consiste à rendre homogène un espace vectoriel, autrement dit à raisonner indépendamment des proportionnalités pour ne plus considérer que des directions. Par exemple, l'espace projectif réel de dimension n, P(R),ou RPn, est l'ensemble des droites vectorielles ou des directions de R ; formellement, c'est le quotient de R{0} par la relation d'équivalence de colinéarité. On peut munir ces espaces projectifs de structures additionnelles pour en faire des variétés.
Tenseur de torsionEn géométrie différentielle, la torsion constitue, avec la courbure, une mesure de la façon dont une base mobile évolue le long des courbes, et le tenseur de torsion en donne l'expression générale dans le cadre des variétés, c'est-à-dire des « espaces courbes » de toutes dimensions. La torsion se manifeste en géométrie différentielle classique comme une valeur numérique associée à chaque point d'une courbe de l'espace euclidien.
IonosphèreL'ionosphère d'une planète est une couche de son atmosphère caractérisée par une ionisation partielle des gaz. Dans le cas de la Terre, elle se situe entre environ d'altitude et recouvre donc une partie de la mésosphère, toute la thermosphère et une partie de l'exosphère. Le rayonnement ultraviolet solaire qui est à l’origine de l’ionosphère réagit sur une partie des molécules atmosphériques en les amputant d’un électron. Un plasma, qui contient des nombres égaux d’électrons et d’ions positifs, est ainsi créé.
Symboles de ChristoffelEn mathématiques et en physique, les symboles de Christoffel (ou coefficients de Christoffel, ou coefficients de connexion) sont une expression de la connexion de Levi-Civita dérivée du tenseur métrique. Les symboles de Christoffel sont utilisés dans les calculs pratiques de la géométrie de l'espace : ce sont des outils de calculs concrets, par exemple pour déterminer les géodésiques des variétés riemanniennes, mais en contrepartie leur manipulation est relativement longue, notamment du fait du nombre de termes impliqués.