Tokamakthumb|Vue intérieure du tore du Tokamak à configuration variable (TCV), dont les parois sont recouvertes de tuiles de graphite. Un tokamak est un dispositif de confinement magnétique expérimental explorant la physique des plasmas et les possibilités de produire de l'énergie par fusion nucléaire. Il existe deux types de tokamaks aux caractéristiques sensiblement différentes, les tokamaks traditionnels toriques (objet de cet article) et les tokamaks sphériques.
Source de neutronsUne source de neutrons est un équipement qui émet des neutrons. Il existe une grande variété de sources qui vont des sources radioactives portables aux réacteurs nucléaires ou aux sources de spallation. Suivant l'énergie et le flux des neutrons, la taille de la source, les coûts et la réglementation, ces équipements peuvent être trouvés dans des domaines aussi variés que la physique, l’ingénierie, la médecine, l'armement nucléaire, l'exploration pétrolière, la biologie, la chimie et l'industrie nucléaire.
Weakly interacting massive particlesEn astrophysique, les WIMPs (acronyme anglais pour Weakly Interacting Massive Particles, pouvant se traduire par « particules massives interagissant faiblement ») sont des particules hypothétiques constituant une solution au problème de la matière noire. En dehors des interactions gravitationnelles, ces particules interagissent très faiblement avec la matière ordinaire (nucléons, électrons), leur section efficace d'interaction est de l'ordre du picobarn.
Télescope à rayons Xvignette|upright=1.5|Schéma du télescope spatial Chandra. Un télescope à est un télescope conçu pour l'astronomie des . Ces derniers doivent être mis en orbite hors de l'atmosphère terrestre, qui est opaque aux . Ils sont donc montés à bord de fusées-sondes ou des satellites artificiels. Au début des années 2000, les télescopes à peuvent observer avec une certaine précision des rayonnements allant jusqu'à une énergie d'environ 15 keV.
Activation neutroniqueL’activation neutronique est le processus par lequel un flux neutronique induit de la radioactivité dans les matériaux qu'il traverse (phénomène de radioactivation). Tout matériau traversé par un flux de neutrons subit progressivement une transmutation par capture neutronique qui rend une partie de ses noyaux radioactifs, et la durée de vie de cette radioactivité impose généralement de le gérer par la suite comme déchet radioactif (le plus souvent comme déchet de faible activité).
Rayonnement cosmiqueLe rayonnement cosmique est le flux de noyaux atomiques et de particules de haute énergie (c'est-à-dire relativistes) qui circulent dans le milieu interstellaire. Le rayonnement cosmique est principalement constitué de particules chargées : protons (88 %), noyaux d'hélium (9 %), antiprotons, électrons, positrons et particules neutres (rayons gamma, neutrinos et neutrons). La source de ce rayonnement se situe selon les cas dans le Soleil, à l'intérieur ou à l'extérieur de notre galaxie.
Rayonnement électromagnétiquethumb|Répartition du rayonnement électromagnétique par longueur d'onde. Le rayonnement électromagnétique est une forme de transfert d'énergie linéaire. La lumière visible est un rayonnement électromagnétique, mais ne constitue qu'une petite tranche du large spectre électromagnétique. La propagation de ce rayonnement, d'une ou plusieurs particules, donne lieu à de nombreux phénomènes comme l'atténuation, l'absorption, la diffraction et la réfraction, le décalage vers le rouge, les interférences, les échos, les parasites électromagnétiques et les effets biologiques.
Compton Gamma-Ray ObservatoryLe Compton Gamma-Ray Observatory (CGRO) est un observatoire spatial pour les rayons γ développé par la NASA. C'est l'un des quatre télescopes spatiaux du programme des Grands Observatoires développé par l'agence spatiale américaine dans les années 1980 pour traiter les principales questions dans le domaine de l'astronomie et de l'astrophysique. Il est placé en orbite par la navette spatiale Atlantis (mission STS-37), le . D'une masse de près de , il est à l'époque le satellite destiné à l'astrophysique le plus lourd jamais lancé.
DeutériumLe deutérium, noté H ou D, est l'isotope de l'hydrogène dont le nombre de masse est égal à 2 : son noyau atomique, appelé deuton ou deutéron, compte et avec un spin 1+ pour une masse atomique de . Il est caractérisé par un excès de masse de et une énergie de liaison nucléaire par nucléon de . Il s'agit d'un isotope stable découvert en 1931 par Harold Clayton Urey, chimiste à l'université Columbia ; cette découverte lui valut le prix Nobel de chimie en 1934. vignette|Tube à gaz au deutérium.