Constraint logic programmingConstraint logic programming is a form of constraint programming, in which logic programming is extended to include concepts from constraint satisfaction. A constraint logic program is a logic program that contains constraints in the body of clauses. An example of a clause including a constraint is . In this clause, is a constraint; A(X,Y), B(X), and C(Y) are literals as in regular logic programming. This clause states one condition under which the statement A(X,Y) holds: X+Y is greater than zero and both B(X) and C(Y) are true.
Conseil (informatique théorique)En théorie de la complexité, un conseil est une entrée supplémentaire passée à une machine de Turing qui dépend de la taille de l'entrée, afin d'aider la machine à reconnaître un langage. Cette notion est introduite par Richard Karp et Richard J. Lipton en 1982. Étant donnés une fonction et une classe de complexité , la classe est l'ensemble des langages tels qu'il existe un langage et une suite de conseils de taille tels que pour toute entrée de taille , si et seulement si .
Causality conditionsIn the study of Lorentzian manifold spacetimes there exists a hierarchy of causality conditions which are important in proving mathematical theorems about the global structure of such manifolds. These conditions were collected during the late 1970s. The weaker the causality condition on a spacetime, the more unphysical the spacetime is. Spacetimes with closed timelike curves, for example, present severe interpretational difficulties. See the grandfather paradox.
Extension simpleEn mathématiques et plus précisément en algèbre, dans le cadre de la théorie des corps commutatifs, une extension L d'un corps K est dite simple s'il existe un élément α de L tel que L est égal à K(α). L'extension simple K(α) est finie si et seulement si α est algébrique sur K. La seule extension simple infinie de K (à isomorphisme près) est le corps de fractions rationnelles K(X). Le théorème de l'élément primitif assure que toute extension séparable finie est simple.
Principe de cohérence de NovikovLe principe de cohérence de Novikov est un principe développé par le professeur Igor Novikov au milieu des années 1980 pour résoudre le problème des paradoxes liés au voyage dans le temps. vignette|redresse|Une boule de billard qui entre en collision avec elle-même après voyage temporel est déviée de sa trajectoire. Le principe de Novikov affirme que la probabilité d'existence d'un événement pouvant provoquer un paradoxe est nulle.
Constraint Handling RulesConstraint Handling Rules (CHR) is a declarative, rule-based programming language, introduced in 1991 by Thom Frühwirth at the time with European Computer-Industry Research Centre (ECRC) in Munich, Germany. Originally intended for constraint programming, CHR finds applications in grammar induction, type systems, abductive reasoning, multi-agent systems, natural language processing, compilation, scheduling, spatial-temporal reasoning, testing, and verification.
Extension de corpsEn mathématiques, plus particulièrement en algèbre, une extension d'un corps commutatif K est un corps L qui contient K comme sous-corps. Par exemple, le corps C des nombres complexes est une extension du corps R des nombres réels, lequel est lui-même une extension du corps Q des nombres rationnels. On note parfois L/K pour indiquer que L est une extension de K. Soit K un corps. Une extension de K est un couple (L, j) où L est un corps et j un morphisme de corps de K dans L (les morphismes de corps étant systématiquement injectifs).
Causal structureIn mathematical physics, the causal structure of a Lorentzian manifold describes the causal relationships between points in the manifold. In modern physics (especially general relativity) spacetime is represented by a Lorentzian manifold. The causal relations between points in the manifold are interpreted as describing which events in spacetime can influence which other events. The causal structure of an arbitrary (possibly curved) Lorentzian manifold is made more complicated by the presence of curvature.
Complexité en tempsEn algorithmique, la complexité en temps est une mesure du temps utilisé par un algorithme, exprimé comme fonction de la taille de l'entrée. Le temps compte le nombre d'étapes de calcul avant d'arriver à un résultat. Habituellement, le temps correspondant à des entrées de taille n est le temps le plus long parmi les temps d’exécution des entrées de cette taille ; on parle de complexité dans le pire cas. Les études de complexité portent dans la majorité des cas sur le comportement asymptotique, lorsque la taille des entrées tend vers l'infini, et l'on utilise couramment les notations grand O de Landau.
Voyage dans le tempsLe voyage dans le temps est un des grands thèmes de la science-fiction, au point d’être considéré comme un genre à part entière. L’idée d’aller revivre le passé ou de découvrir à l’avance le futur est un rêve humain causé par le fait que l’être humain avance dans le temps de manière permanente, mais irréversible (et, à l’état de veille, apparemment de façon linéaire). La première mention d’un voyage dans le temps serait le personnage de Merlin l’Enchanteur dans le cycle arthurien des chevaliers de la Table ronde, qui visitait les temps passés.