Matrix multiplication algorithmBecause matrix multiplication is such a central operation in many numerical algorithms, much work has been invested in making matrix multiplication algorithms efficient. Applications of matrix multiplication in computational problems are found in many fields including scientific computing and pattern recognition and in seemingly unrelated problems such as counting the paths through a graph. Many different algorithms have been designed for multiplying matrices on different types of hardware, including parallel and distributed systems, where the computational work is spread over multiple processors (perhaps over a network).
Théorie des représentationsLa théorie des représentations est une branche des mathématiques qui étudie les structures algébriques abstraites en représentant leurs éléments comme des transformations linéaires d'espaces vectoriels, et qui étudie les modules sur ces structures algébriques abstraites. Essentiellement, une représentation concrétise un objet algébrique abstrait en décrivant ses éléments par des matrices et les opérations sur ces éléments en termes d'addition matricielle et de produit matriciel.
Variété algébriqueUne variété algébrique est, de manière informelle, l'ensemble des racines communes d'un nombre fini de polynômes en plusieurs indéterminées. C'est l'objet d'étude de la géométrie algébrique. Les schémas sont des généralisations des variétés algébriques. Il y a deux points de vue (essentiellement équivalents) sur les variétés algébriques : elles peuvent être définies comme des schémas de type fini sur un corps (langage de Grothendieck), ou bien comme la restriction d'un tel schéma au sous-ensemble des points fermés.
Espace de BanachEn mathématiques, plus particulièrement en analyse fonctionnelle, on appelle espace de Banach un espace vectoriel normé sur un sous-corps K de C (en général, K = R ou C), complet pour la distance issue de sa norme. Comme la topologie induite par sa distance est compatible avec sa structure d’espace vectoriel, c’est un espace vectoriel topologique. Les espaces de Banach possèdent de nombreuses propriétés qui font d'eux un outil essentiel pour l'analyse fonctionnelle. Ils doivent leur nom au mathématicien polonais Stefan Banach.
Transformation naturelleEn théorie des catégories, une transformation naturelle permet de transformer un foncteur en un autre tout en respectant la structure interne (c'est-à-dire la composition des morphismes) des catégories considérées. On peut ainsi la voir comme un morphisme de foncteurs. Soient et deux catégories, F et G deux foncteurs covariants de dans .
Mission d'évaluation des politiques publiquesLa Mission d'évaluation des politiques publiques (MEPP) est un service rattaché à la Direction générale de la modernisation de l'État, placé sous l'autorité fonctionnelle du cabinet du Ministère du Budget, des Comptes publics, de la Fonction publique et de la Réforme de l'État et chargé de piloter les structures d'évaluation interne de l'administration. La Mission d’évaluation des politiques publiques doit supporter à l’échelle interministérielle la gouvernance de l'évaluation et la coordination des Comités ministériels d’évaluation (CME).
Corps commutatifvignette|Corps commutatif (pour n premier) En mathématiques, un corps commutatif (parfois simplement appelé corps, voir plus bas, ou parfois appelé champ) est une des structures algébriques fondamentales de l'algèbre générale. C'est un ensemble muni de deux opérations binaires rendant possibles les additions, soustractions, multiplications et divisions. Plus précisément, un corps commutatif est un anneau commutatif dans lequel l'ensemble des éléments non nuls est un groupe commutatif pour la multiplication.
Espace de Hilbertvignette|Une photographie de David Hilbert (1862 - 1943) qui a donné son nom aux espaces dont il est question dans cet article. En mathématiques, un espace de Hilbert est un espace vectoriel réel (resp. complexe) muni d'un produit scalaire euclidien (resp. hermitien), qui permet de mesurer des longueurs et des angles et de définir une orthogonalité. De plus, un espace de Hilbert est complet, ce qui permet d'y appliquer des techniques d'analyse. Ces espaces doivent leur nom au mathématicien allemand David Hilbert.
Système de calcul formelUn système de calcul formel (computer algebra system ou CAS en anglais) est un logiciel qui facilite le calcul symbolique. La partie principale de ce système est la manipulation des expressions mathématiques sous leur forme symbolique. Les expressions peuvent être : des polynômes avec de multiples variables ; des fonctions (fonctions trigonométriques, exponentielle, etc.) ; des fonctions spéciales (gamma, zêta, erf, Bessel, etc.
CoalgèbreEn mathématiques, la notion de coalgèbre est une notion duale de celle d'algèbre sur un anneau ou sur un corps. Informellement, une algèbre A est un espace vectoriel (ou un -module) qui est muni en plus d'une multiplication, c'est-à-dire d'une application qui compose deux éléments de A pour en construire un troisième. Une coalgèbre C est donc un espace vectoriel (ou un -module) muni d'une comultiplication, c'est-à-dire-d'une application qui prend un élément de C et qui en retourne deux. Soit K un corps.