Calcul des propositionsLe calcul des propositions ou calcul propositionnel, (ou encore logique des propositions) fait partie de la logique mathématique. Il a pour objet l'étude des relations logiques entre « propositions » et définit les lois formelles selon lesquelles les propositions complexes sont formées en assemblant des propositions simples au moyen des connecteurs logiques et celles-ci sont enchaînées pour produire des raisonnements valides. Il est un des systèmes formels, piliers de la logique mathématique dont il aide à la formulation des concepts.
Proposition (philosophie)Une proposition est en philosophie ce qui dans un énoncé est susceptible d'être conservé lors d'une traduction et de recevoir une valeur de vérité, c'est-à-dire d'être vrai ou faux. Un exemple courant pour désigner ce qu'est une proposition par rapport à un énoncé ou à une phrase est de comparer les deux énoncés ou phrases suivantes : « Il pleut. » « It's raining. » Ces deux énoncés ou phrases ont la même proposition, à savoir qu'il pleut. Un autre exemple courant dans le domaine est de comparer « La neige est blanche » et « Snow is white ».
Variable propositionnelleUne variable est représentée par un symbole qui définit une quantité qui peut prendre n'importe quelle valeur dans un ensemble de valeurs. En logique mathématique, une variable propositionnelle est un symbole qui désigne une proposition dans le calcul propositionnel, c'est une variable qui peut être remplacée par une proposition vraie ou fausse ou par une formule qui est elle-même composée de variables propositionnelles et donc qui peut prendre parfois la valeur vraie et parfois la valeur faux.
Analyse en composantes principalesL'analyse en composantes principales (ACP ou PCA en anglais pour principal component analysis), ou, selon le domaine d'application, transformation de Karhunen–Loève (KLT) ou transformation de Hotelling, est une méthode de la famille de l'analyse des données et plus généralement de la statistique multivariée, qui consiste à transformer des variables liées entre elles (dites « corrélées » en statistique) en nouvelles variables décorrélées les unes des autres. Ces nouvelles variables sont nommées « composantes principales » ou axes principaux.
Logique modaleEn logique mathématique, une logique modale est un type de logique formelle qui étend la logique propositionnelle, la logique du premier ordre ou la logique d'ordre supérieur avec des modalités. Une modalité spécifie des . Par exemple, une proposition comme « il pleut » peut être précédée d'une modalité : Il est nécessaire qu'''il pleuve ; Demain, il pleut ; Christophe Colomb croit quil pleut ; Il est démontré qu'''il pleut ; Il est obligatoire quil pleuve.
LogiqueLa logique — du grec , qui est un terme dérivé de signifiant à la fois « raison », « langage » et « raisonnement » — est, dans une première approche, l'étude de l'inférence, c'est-à-dire des règles formelles que doit respecter toute argumentation correcte. Le terme aurait été utilisé pour la première fois par Xénocrate. La logique antique se décompose d'abord en dialectique et rhétorique. Elle est depuis l'Antiquité l'une des grandes disciplines de la philosophie, avec l'éthique (philosophie morale) et la physique (science de la nature).
Logique intuitionnisteLa logique intuitionniste est une logique qui diffère de la logique classique par le fait que la notion de vérité est remplacée par la notion de preuve constructive. Une proposition telle que « la constante d'Euler-Mascheroni est rationnelle ou la constante d'Euler-Mascheroni n'est pas rationnelle » n'est pas démontrée de manière constructive (intuitionniste) dans le cadre de nos connaissances mathématiques actuelles, car la tautologie classique « P ou non P » (tiers exclu) n'appartient pas à la logique intuitionniste.
Démonstration (logique et mathématiques)vignette| : un des plus vieux fragments des Éléments d'Euclide qui montre une démonstration mathématique. En mathématiques et en logique, une démonstration est un ensemble structuré d'étapes correctes de raisonnement. Dans une démonstration, chaque étape est soit un axiome (un fait acquis), soit l'application d'une règle qui permet d'affirmer qu'une proposition, la conclusion, est une conséquence logique d'une ou plusieurs autres propositions, les prémisses de la règle.
Système formelUn système formel est une modélisation mathématique d'un langage en général spécialisé. Les éléments linguistiques, mots, phrases, discours, etc., sont représentés par des objets finis (entiers, suites, arbres ou graphes finis...). Le propre d'un système formel est que la correction au sens grammatical de ses éléments est vérifiable algorithmiquement, c'est-à-dire que ceux-ci forment un ensemble récursif.
Synthèse chimiqueUne synthèse chimique est un enchaînement de réactions chimiques mis en œuvre volontairement ou non permettant l'obtention d'un ou de plusieurs produits finaux, parfois avec isolation de composés chimiques intermédiaires. Les synthèses chimiques peuvent avoir lieu à toutes sortes d'échelles : du laboratoire de recherche (de l'ordre du gramme ou moins) à l'industrie chimique (souvent de l'ordre de la tonne ou plus) ou dans la nature (biosynthèses).