Elementary amenable groupIn mathematics, a group is called elementary amenable if it can be built up from finite groups and abelian groups by a sequence of simple operations that result in amenable groups when applied to amenable groups. Since finite groups and abelian groups are amenable, every elementary amenable group is amenable - however, the converse is not true.
Algèbre à divisionEn mathématiques, et plus précisément en algèbre, une algèbre à division est une algèbre sur un corps avec la possibilité de diviser par un élément non nul (à droite et à gauche). Toutefois, dans une algèbre à division, la multiplication peut ne pas être commutative, ni même associative. Un anneau à division ou corps gauche, comme celui-des quaternions, est une algèbre associative à division sur son centre, ou sur un sous-corps de celui-ci. Soit A un anneau unitaire. L'élément 0 n'est pas inversible, sauf si A est nul.
Locally finite collectionA collection of subsets of a topological space is said to be locally finite if each point in the space has a neighbourhood that intersects only finitely many of the sets in the collection. In the mathematical field of topology, local finiteness is a property of collections of subsets of a topological space. It is fundamental in the study of paracompactness and topological dimension. Note that the term locally finite has different meanings in other mathematical fields. A finite collection of subsets of a topological space is locally finite.
Produit mixteEn géométrie, produit mixte est le nom que prend le déterminant dans un cadre euclidien orienté. Sa valeur absolue s'interprète comme le volume d'un parallélotope. Pour le produit mixte dans un espace euclidien orienté de dimension trois, voir l'article géométrie vectorielle. Soit E un espace euclidien orienté de dimension n. Soit B une base orthonormale directe de E. Le produit mixte de n vecteurs de E est défini par Il ne dépend pas de la base orthonormale directe B choisie.
Produit vectoriel en dimension 7En mathématiques, et plus précisément en algèbre linéaire, le produit vectoriel en dimension 7 est une loi de composition interne d'un espace euclidien à 7 dimensions, ayant certaines propriétés du produit vectoriel usuel (en dimension 3) ; on démontre d'ailleurs que de telles lois n'existent qu'en dimensions trois et sept. Les principes sous-jacents à la construction du produit vectoriel en dimension 7 seront présentés dans la section suivante.
Théorie géométrique des groupesLa théorie géométrique des groupes est un domaine des mathématiques pour l'étude des groupes de type fini à travers les connexions entre les propriétés algébriques de ces groupes et les propriétés topologiques et géométriques des espaces sur lesquels ils opèrent. Les groupes sont vus comme des ensembles de symétries ou d'applications continues sur ces espaces. Une autre idée importante de la théorie géométrique des groupes est de considérer les groupes de type fini eux-mêmes comme des objets géométriques, généralement via le graphe de Cayley du groupe étudié.
Espace localement convexeEn mathématiques, un espace localement convexe est un espace vectoriel topologique dont la topologie peut être définie à l'aide d'une famille de semi-normes. C'est une généralisation de la notion d'espace normé. Un espace vectoriel topologique E est dit localement convexe s'il vérifie l'une des deux propriétés équivalentes suivantes : il existe une famille de semi-normes telle que la topologie de E est initiale pour l'ensemble d'applications ; le vecteur nul possède une base de voisinages formée de convexes.
Produit semi-directEn théorie des groupes, le produit semi-direct permet de définir un groupe G à partir de deux groupes H et K, et généralise la notion de produit direct de deux groupes. Un groupe G est produit semi-direct interne d'un sous-groupe normal H par un sous-groupe K si et seulement si l'une des définitions équivalentes suivantes est vérifiée : (en d'autres termes, H et K sont compléments l'un de l'autre dans G) ; (tout élément de G s'écrit de manière unique comme produit d'un élément de H et d'un élément de K) ; la restriction à K de la surjection canonique est un isomorphisme entre et ; la surjection canonique se scinde par un morphisme tel que .
Théorie des invariantsEn mathématiques, la théorie des invariants, initiée et développée en particulier par Arthur Cayley, James Joseph Sylvester, Charles Hermite, Paul Gordan et de nombreux autres mathématiciens, est l'étude des invariants des formes algébriques (de façon équivalente, des tenseurs symétriques) pour les actions de groupe lors des transformations linéaires. À la fin du , elle est au centre d'un important effort de recherche lorsqu'il apparaît qu'elle pourrait être la clé de voûte en algorithmique (en compétition avec d'autres formulations mathématiques de l'invariance de la symétrie).
Invariant measureIn mathematics, an invariant measure is a measure that is preserved by some function. The function may be a geometric transformation. For examples, circular angle is invariant under rotation, hyperbolic angle is invariant under squeeze mapping, and a difference of slopes is invariant under shear mapping. Ergodic theory is the study of invariant measures in dynamical systems. The Krylov–Bogolyubov theorem proves the existence of invariant measures under certain conditions on the function and space under consideration.