TenseurEn mathématiques, plus précisément en algèbre multilinéaire et en géométrie différentielle, un tenseur est un objet très général, dont la valeur s'exprime dans un espace vectoriel. On peut l'utiliser entre autres pour représenter des applications multilinéaires ou des multivecteurs.
Tenseur symétriqueUn tenseur d'ordre 2 est dit symétrique si la forme bilinéaire associée est symétrique. Un tenseur d'ordre 2 étant défini par rapport à un certain espace vectoriel, on peut y choisir des vecteurs de base et le tenseur est alors représenté par une matrice de composantes . Une définition équivalente à la précédente consiste à dire que la matrice est symétrique, c'est-à-dire que : pour tout couple d'indices i et j, car cette propriété reste inchangée si l'on change de base.
Tenseur (mathématiques)Les tenseurs sont des objets mathématiques issus de l'algèbre multilinéaire permettant de généraliser les scalaires et les vecteurs. On les rencontre notamment en analyse vectorielle et en géométrie différentielle fréquemment utilisés au sein de champs de tenseurs. Ils sont aussi utilisés en mécanique des milieux continus. Le présent article ne se consacre qu'aux tenseurs dans des espaces vectoriels de dimension finie, bien que des généralisations en dimension infinie et même pour des modules existent.
Contraction tensorielleEn algèbre multilinéaire, la contraction est un procédé de calcul sur les tenseurs faisant intervenir la dualité. En coordonnées elle se représente de façon très simple en utilisant les notations d'Einstein et consiste à faire une somme sur un indice muet. Il est possible de contracter un tenseur unique de rang p en un tenseur de rang p-2, par exemple en calculant la trace d'une matrice. Il est possible également de contracter deux tenseurs, ce qui généralise la notion de produit matriciel.
Produit tensorielEn mathématiques, le produit tensoriel est un moyen commode de coder les objets multilinéaires. Il est utilisé en algèbre, en géométrie différentielle, en géométrie riemannienne, en analyse fonctionnelle et en physique (mécanique des solides, relativité générale et mécanique quantique). Théorème et définition. Soient et deux espaces vectoriels sur un corps commutatif .
Théorie des ensemblesLa théorie des ensembles est une branche des mathématiques, créée par le mathématicien allemand Georg Cantor à la fin du . La théorie des ensembles se donne comme primitives les notions d'ensemble et d'appartenance, à partir desquelles elle reconstruit les objets usuels des mathématiques : fonctions, relations, entiers naturels, relatifs, rationnels, nombres réels, complexes... C'est pourquoi la théorie des ensembles est considérée comme une théorie fondamentale dont Hilbert a pu dire qu'elle était un « paradis » créé par Cantor pour les mathématiciens.
Ensemblevignette|Ensemble de polygones dans un diagramme d'Euler En mathématiques, un ensemble désigne intuitivement un rassemblement d’objets distincts (les éléments de l'ensemble), « une multitude qui peut être comprise comme une totalité » pour paraphraser Georg Cantor qui est à l'origine de la théorie des ensembles. Dans une approche axiomatique, la théorie des ensembles est une théorie de l'appartenance (un élément d'un ensemble est dit « appartenir » à cet ensemble).
Ensemble videvignette|Notation de l'ensemble vide. En mathématiques, l'ensemble vide est l'ensemble ne contenant aucun élément. L'ensemble vide peut être noté d'un O barré, à savoir ∅ ou simplement { }, qui est une paire d'accolades ne contenant qu'une espace, pour représenter un ensemble qui ne contient rien. La notation ∅ a été introduite par André Weil, dans le cadre de l'institution de notations par le groupe Bourbaki. Von Neumann dans son article de 1923, qui est l'une des premières références qui l'aborde, le note O.
Outilthumb|Une boîte à outils en bois des années 1950. Un outil est un objet physique utilisé par un être vivant directement, ou par l'intermédiaire d'une machine, afin d'exercer une action le plus souvent mécanique, ou thermique, sur un élément d'environnement à traiter (matière brute, objet fini ou semi-fini, être vivant, etc). Il améliore l'efficacité des actions entreprises ou donne accès à des actions impossibles autrement. Beaucoup procurent un avantage mécanique en fonctionnant selon le principe d'une machine simple, comme la pince-monseigneur, qui exploite le principe du levier.
Stockage d'énergie de réseauvignette|Réseau électrique simplifié avec stockage d'énergie. vignette|Flux d'énergie simplifié du réseau avec et sans stockage d'énergie, idéalisé pour le cours d'une journée Le stockage d'énergie de réseau (également appelé stockage d'énergie à grande échelle) est un ensemble de méthodes utilisées pour le stockage d'énergie à grande échelle au sein d'un réseau électrique.