Membrane plasmiqueLa membrane plasmique, également appelée membrane cellulaire, membrane cytoplasmique, voire plasmalemme, est une membrane biologique séparant l'intérieur d'une cellule, appelé cytoplasme, de son environnement extérieur, c'est-à-dire du milieu extracellulaire. Cette membrane joue un rôle biologique fondamental en isolant la cellule de son environnement.
Méthode de séparation membranaireLes méthodes de séparation membranaire sont un procédé de séparation de fluides utilisant comme agent séparant une membrane synthétique qui est une couche mince de matière. L’épaisseur d’une membrane peut varier de à un peu plus de . Elle permet l’arrêt ou le passage sélectif de certaines substances dissoutes ou non dans un mélange, entre les deux milieux qu’elle sépare. La partie du mélange retenue par la membrane est appelée rétentat (ou concentrat) alors que celle qui traverse cette dernière est appelée perméat.
Membrane synthétiquevignette|Schéma d'une membrane. Une membrane synthétique est une membrane agissant comme un filtre dans des procédés industriels ou des expériences biochimiques. Une membrane est une couche de matériau servant de filtre entre deux phases, imperméable à certaines particules, molécules ou substances dans certaines conditions. Certains composant peuvent traverser la membrane par le flux d'imprégnation, tandis que d'autres ne passent pas et s'accumulent dans le flux de retenue.
Actinevignette|Actine G. vignette|Actine F. L'actine est une protéine bi-globulaire de de diamètre qui joue un rôle important dans l'architecture et les mouvements cellulaires [EN]. Elle est présente dans toutes les cellules du corps (c’est une protéine ubiquitaire), mais elle est particulièrement abondante dans les cellules musculaires. Elle peut représenter jusqu'à 15 % de la masse totale protéique des cellules. Cette protéine a été hautement conservée lors de l'évolution des eucaryotes, puisque l'identité entre un isotype d'actine humaine et l'actine de levure (S.
Tenseur de RicciDans le cadre de la relativité générale, le champ de gravitation est interprété comme une déformation de l'espace-temps. Celle-ci est exprimée à l'aide du tenseur de Ricci. Le tenseur de Ricci est un champ tensoriel d'ordre 2, obtenu comme la trace du tenseur de courbure complet. On peut le considérer comme le laplacien du tenseur métrique riemannien dans le cas des variétés riemaniennes. Le tenseur de Ricci occupe une place importante notamment dans l'équation d'Einstein, équation principale de la relativité générale.
Courbure de Gaussvignette|De gauche à droite : une surface de courbure de Gauss négative (un hyperboloïde), une surface de courbure nulle (un cylindre), et une surface de courbure positive (une sphère). vignette|Certains points du tore sont de courbure positive (points elliptiques) et d'autres de courbure négative (points hyperboliques) La courbure de Gauss, parfois aussi appelée courbure totale, d'une surface paramétrée X en X(P) est le produit des courbures principales. De manière équivalente, la courbure de Gauss est le déterminant de l'endomorphisme de Weingarten.
Géométrie différentiellevignette|Exemple d'objets étudiés en géométrie différentielle. Un triangle dans une surface de type selle de cheval (un paraboloïde hyperbolique), ainsi que deux droites parallèles. En mathématiques, la géométrie différentielle est l'application des outils du calcul différentiel à l'étude de la géométrie. Les objets d'étude de base sont les variétés différentielles, ensembles ayant une régularité suffisante pour envisager la notion de dérivation, et les fonctions définies sur ces variétés.
Courbure scalaireEn géométrie riemannienne, la courbure scalaire (ou scalaire de Ricci) est un des outils de mesure de la courbure d'une variété riemannienne. Cet invariant riemannien est une fonction qui affecte à chaque point m de la variété un simple nombre réel noté R(m) ou s(m), portant une information sur la courbure intrinsèque de la variété en ce point. Ainsi, on peut décrire le comportement infinitésimal des boules et des sphères centrées en m à l'aide de la courbure scalaire.
Courbure principaleEn géométrie différentielle des surfaces, les deux courbures principales d'une surface sont les courbures de cette surface selon deux directions perpendiculaires appelées directions principales. On montre que ce sont les courbures minimale et maximale rencontrées en faisant tourner le plan de coupe. Les courbures principales sont les valeurs propres de l'endomorphisme de Weingarten. Elles caractérisent la géométrie locale des surfaces à l'ordre 2.
Géométrie riemanniennevignette|275px|L'étude de la forme de l'univers est une adaptation des idées et méthodes de la géométrie riemannienne La géométrie riemannienne est une branche de la géométrie différentielle nommée en l'honneur du mathématicien Bernhard Riemann, qui introduisit les concepts fondateurs de variété géométrique et de courbure. Il s'agit de surfaces ou d'objets de plus grande dimension sur lesquels existent des notions d'angle et de longueur, généralisant la géométrie traditionnelle qui se limitait à l'espace euclidien.