ApproximationUne approximation est une représentation imprécise ayant toutefois un lien étroit avec la quantité ou l’objet qu’elle reflète : approximation d’un nombre (de π par 3,14, de la vitesse instantanée d’un véhicule par sa vitesse moyenne entre deux points), d’une fonction mathématique, d’une solution d’un problème d’optimisation, d’une forme géométrique, d’une loi physique. Lorsqu’une partie de l’information nécessaire fait défaut, une approximation peut se substituer à une représentation exacte.
Équation différentielle linéaireUne équation différentielle linéaire est un cas particulier d'équation différentielle pour lequel on peut appliquer des procédés de superposition de solutions, et exploiter des résultats d'algèbre linéaire. De nombreuses équations différentielles de la physique vérifient la propriété de linéarité. De plus, les équations différentielles linéaires apparaissent naturellement en perturbant une équation différentielle (non linéaire) autour d'une de ses solutions.
Mesh generationMesh generation is the practice of creating a mesh, a subdivision of a continuous geometric space into discrete geometric and topological cells. Often these cells form a simplicial complex. Usually the cells partition the geometric input domain. Mesh cells are used as discrete local approximations of the larger domain. Meshes are created by computer algorithms, often with human guidance through a GUI , depending on the complexity of the domain and the type of mesh desired.
Nombre de ReynoldsEn mécanique des fluides, le , noté , est un nombre sans dimension caractéristique de la transition laminaire-turbulent. Il est mis en évidence en par Osborne Reynolds. Le nombre de Reynold est applicable à tout écoulement de fluide visqueux, et prévoit son régime. Pour des petites valeurs de , le régime est dominé par la viscosité et l'écoulement est laminaire. Pour les grandes valeurs de , le régime est dominé par l'inertie et l'écoulement est turbulent.
Mécanique des fluidesLa mécanique des fluides est un domaine de la physique consacré à l’étude du comportement des fluides (liquides, gaz et plasmas) et des forces internes associées. C’est une branche de la mécanique des milieux continus qui modélise la matière à l’aide de particules assez petites pour relever de l’analyse mathématique, mais assez grandes par rapport aux molécules pour être décrites par des fonctions continues. Elle comprend deux sous-domaines : la statique des fluides, qui est l’étude des fluides au repos, et la dynamique des fluides, qui est l’étude des fluides en mouvement.
Équation différentielle à retardEn mathématiques, les équations différentielles à retard (EDR) sont un type d'équation différentielle dans laquelle la dérivée de la fonction inconnue à un certain instant est donnée en fonction des valeurs de la fonction aux instants précédents. Les EDR sont également appelés des systèmes à retard, systèmes avec effet secondaire ou temps mort, systèmes héréditaires, équations à argument déviant, ou équations aux différences différentielles .
Tourbillon de turbulencevignette|upright=0.75|Allées de Karman autour de Madère et des îles Canaries vignette|upright=0.75|Les courants océaniques de Oya shivo et Kuroshio se rencontrent et donnent un tourbillon de turbulence visible par la concentration du phytoplancton dans le vortex. Un tourbillon de turbulence est un élément d'une masse fluide turbulente qui a une certaine individualité et une certaine vie qui lui sont propres. Il peut être causé par un obstacle dans le flot créant un contre-courant, par une différence de densité entre deux sections du fluide ou par la rencontre de deux fluides.
Differential-algebraic system of equationsIn electrical engineering, a differential-algebraic system of equations (DAE) is a system of equations that either contains differential equations and algebraic equations, or is equivalent to such a system. In mathematics these are examples of differential algebraic varieties and correspond to ideals in differential polynomial rings (see the article on differential algebra for the algebraic setup).
Reduced chi-squared statisticIn statistics, the reduced chi-square statistic is used extensively in goodness of fit testing. It is also known as mean squared weighted deviation (MSWD) in isotopic dating and variance of unit weight in the context of weighted least squares. Its square root is called regression standard error, standard error of the regression, or standard error of the equation (see ) It is defined as chi-square per degree of freedom: where the chi-squared is a weighted sum of squared deviations: with inputs: variance , observations O, and calculated data C.
Écoulement de StokesUn écoulement de Stokes (ou écoulement rampant) caractérise un fluide visqueux qui s'écoule lentement en un lieu étroit ou autour d'un petit objet, dont les effets visqueux dominent alors sur les effets inertiels. On parle parfois de fluide de Stokes par opposition à fluide parfait. Il est en effet régi par une version simplifiée de l'équation de Navier-Stokes, léquation de Stokes, dans laquelle les termes inertiels sont absents.