Variété différentielleEn mathématiques, les variétés différentielles ou variétés différentiables sont les objets de base de la topologie différentielle et de la géométrie différentielle. Il s'agit de variétés, « espaces courbes » localement modelés sur l'espace euclidien de dimension n, sur lesquelles il est possible de généraliser une bonne part des opérations du calcul différentiel et intégral. Une variété différentielle se définit donc d'abord par la donnée d'une variété topologique, espace topologique localement homéomorphe à l'espace R.
Hermitian manifoldIn mathematics, and more specifically in differential geometry, a Hermitian manifold is the complex analogue of a Riemannian manifold. More precisely, a Hermitian manifold is a complex manifold with a smoothly varying Hermitian inner product on each (holomorphic) tangent space. One can also define a Hermitian manifold as a real manifold with a Riemannian metric that preserves a complex structure. A complex structure is essentially an almost complex structure with an integrability condition, and this condition yields a unitary structure (U(n) structure) on the manifold.
Non-abelian groupIn mathematics, and specifically in group theory, a non-abelian group, sometimes called a non-commutative group, is a group (G, ∗) in which there exists at least one pair of elements a and b of G, such that a ∗ b ≠ b ∗ a. This class of groups contrasts with the abelian groups. (In an abelian group, all pairs of group elements commute). Non-abelian groups are pervasive in mathematics and physics. One of the simplest examples of a non-abelian group is the dihedral group of order 6. It is the smallest finite non-abelian group.
Hilbert manifoldIn mathematics, a Hilbert manifold is a manifold modeled on Hilbert spaces. Thus it is a separable Hausdorff space in which each point has a neighbourhood homeomorphic to an infinite dimensional Hilbert space. The concept of a Hilbert manifold provides a possibility of extending the theory of manifolds to infinite-dimensional setting. Analogously to the finite-dimensional situation, one can define a differentiable Hilbert manifold by considering a maximal atlas in which the transition maps are differentiable.
Tenseur de Riemannvignette|Motivation de la courbure de Riemann pour les variétés sphériques. En géométrie riemannienne, le tenseur de courbure de Riemann-Christoffel est la façon la plus courante d'exprimer la courbure des variétés riemanniennes, ou plus généralement d'une variété disposant d'une connexion affine, avec ou sans torsion. Soit deux géodésiques d'un espace courbe, parallèles au voisinage d'un point P. Le parallélisme ne sera pas nécessairement conservé en d'autres points de l'espace.
Groupe abélienEn mathématiques, plus précisément en algèbre, un groupe abélien (du nom de Niels Abel), ou groupe commutatif, est un groupe dont la loi de composition interne est commutative. Vu autrement, un groupe commutatif peut aussi être défini comme un module sur l'anneau commutatif des entiers relatifs ; l'étude des groupes abéliens apparaît alors comme un cas particulier de la théorie des modules. On sait classifier de façon simple et explicite les groupes abéliens de type fini à isomorphisme près, et en particulier décrire les groupes abéliens finis.
Classe de ChernEn mathématiques, les classes de Chern sont des classes caractéristiques associées aux fibrés vectoriels. Elles tiennent leur nom du mathématicien sino-américain Shiing-Shen Chern, qui les a introduites en 1946 dans le cas complexe. Les classes de Chern ont des applications importantes en mathématiques, notamment en topologie et géométrie algébriques, et en physique dans l'étude des théories de Yang-Mills et des champs quantiques. Distinguer deux fibrés vectoriels sur une variété lisse est en général un problème difficile.
Métrique pseudo-riemannienneEn mathématiques et en physique, une métrique pseudo-riemannienne est une extension de la métrique riemannienne dans laquelle un certain nombre d'axes de l'espace qu'elle décrit ont des normes négatives. Si la métrique pseudo-riemanienne est en réalité un champ tensoriel, et donc varie d'un point à un autre, sa signature (le nombre d'axes dont les normes sont positives et le nombre d'axes dont les normes sont négatives), elle, ne peut jamais changer pour un même espace. Variété pseudo-riemannienne Catégori
Réseau (sous-groupe discret)En théorie des groupes le terme réseau désigne un sous-groupe d'un groupe topologique localement compact vérifiant les conditions suivantes : est discret dans , ce qui est équivalent à la condition qu'il existe un voisinage ouvert de l'identité de tel que ; est de covolume fini dans , c'est-à-dire qu'il existe sur l'espace quotient une mesure Borélienne de masse totale finie et invariante par (agissant par translations à droite). Un réseau est dit uniforme quand le quotient est compact. On dit alors que est un réseau de .
Hermitian symmetric spaceIn mathematics, a Hermitian symmetric space is a Hermitian manifold which at every point has an inversion symmetry preserving the Hermitian structure. First studied by Élie Cartan, they form a natural generalization of the notion of Riemannian symmetric space from real manifolds to complex manifolds. Every Hermitian symmetric space is a homogeneous space for its isometry group and has a unique decomposition as a product of irreducible spaces and a Euclidean space.