Heun's methodIn mathematics and computational science, Heun's method may refer to the improved or modified Euler's method (that is, the explicit trapezoidal rule), or a similar two-stage Runge–Kutta method. It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. Both variants can be seen as extensions of the Euler method into two-stage second-order Runge–Kutta methods.
Linear fractional transformationIn mathematics, a linear fractional transformation is, roughly speaking, an invertible transformation of the form The precise definition depends on the nature of a, b, c, d, and z. In other words, a linear fractional transformation is a transformation that is represented by a fraction whose numerator and denominator are linear. In the most basic setting, a, b, c, d, and z are complex numbers (in which case the transformation is also called a Möbius transformation), or more generally elements of a field.
Valeur propre, vecteur propre et espace propreEn mathématiques, et plus particulièrement en algèbre linéaire, le concept de vecteur propre est une notion algébrique s'appliquant à une application linéaire d'un espace dans lui-même. Il correspond à l'étude des axes privilégiés, selon lesquels l'application se comporte comme une dilatation, multipliant les vecteurs par une même constante. Ce rapport de dilatation est appelé valeur propre, les vecteurs auxquels il s'applique s'appellent vecteurs propres, réunis en un espace propre.
Méthode d'OtsuEn vision par ordinateur et , la méthode d'Otsu est utilisée pour effectuer un automatique à partir de la forme de l', ou la réduction d'une image à niveaux de gris en une image binaire. L'algorithme suppose alors que l'image à binariser ne contient que deux classes de pixels, (c'est-à-dire le premier plan et l'arrière-plan) puis calcule le seuil optimal qui sépare ces deux classes afin que leur variance intra-classe soit minimale. L'extension de la méthode originale pour faire du seuillage à plusieurs niveaux est appelée Multi Otsu method.
Algèbre linéairevignette|R3 est un espace vectoriel de dimension 3. Droites et plans qui passent par l'origine sont des sous-espaces vectoriels. L’algèbre linéaire est la branche des mathématiques qui s'intéresse aux espaces vectoriels et aux transformations linéaires, formalisation générale des théories des systèmes d'équations linéaires. L'algèbre linéaire est initiée dans son principe par le mathématicien perse Al-Khwârizmî qui s'est inspiré des textes de mathématiques indiens et qui a complété les travaux de l'école grecque, laquelle continuera de se développer des siècles durant.
Variété (géométrie)En mathématiques, et plus particulièrement en géométrie, la notion de variété peut être appréhendée intuitivement comme la généralisation de la classification qui établit qu'une courbe est une variété de dimension 1 et une surface est une variété de dimension 2. Une variété de dimension n, où n désigne un entier naturel, est un espace topologique localement euclidien, c'est-à-dire dans lequel tout point appartient à une région qui s'apparente à un tel espace.
Matrice nilpotenteUne matrice nilpotente est une matrice dont il existe une puissance égale à la matrice nulle. Elle correspond à la notion d'endomorphisme nilpotent sur un espace vectoriel de dimension finie. Cette notion facilite souvent le calcul matriciel. En effet, si le polynôme caractéristique d'une matrice est scindé (c'est-à-dire décomposable en produit de facteurs du premier degré, ce qui est le cas par exemple si le corps des coefficients est algébriquement clos), alors l'endomorphisme associé possède une décomposition de Dunford.
Méthode de JacobiLa méthode de Jacobi, due au mathématicien allemand Karl Jacobi, est une méthode itérative de résolution d'un système matriciel de la forme Ax = b. Pour cela, on utilise une suite x qui converge vers un point fixe x, solution du système d'équations linéaires. On cherche à construire, pour x donné, la suite x = F(x) avec . où est une matrice inversible. où F est une fonction affine. La matrice B = MN est alors appelée matrice de Jacobi.
Décomposition de SchurEn algèbre linéaire, une décomposition de Schur (nommée après le mathématicien Issai Schur) d'une matrice carrée complexe M est une décomposition de la formeoù U est une matrice unitaire (U*U = I) et A une matrice triangulaire supérieure. On peut écrire la décomposition de Schur en termes d'applications linéaires : Dans le cas où est l'application nulle, l'énoncé est directement vérifié, on peut donc se contenter de traiter le cas où est différente de l'application nulle.
Base orthonorméeEn géométrie vectorielle, une base orthonormale ou base orthonormée (BON) d'un espace euclidien ou hermitien est une base de cet espace vectoriel constituée de vecteurs de norme 1 et orthogonaux deux à deux. Dans une telle base, les coordonnées d'un vecteur quelconque de l'espace sont égales aux produits scalaires respectifs de ce vecteur par chacun des vecteurs de base, et le produit scalaire de deux vecteurs quelconques a une expression canonique en fonction de leurs coordonnées.