Théorème de Noether (physique)Le théorème de Noether exprime l'équivalence qui existe entre les lois de conservation et l'invariance du lagrangien d'un système par certaines transformations (appelées symétries) des coordonnées. Démontré en 1915 et publié en 1918 par la mathématicienne Emmy Noether à Göttingen, ce théorème fut qualifié par Albert Einstein de « monument de la pensée mathématique » dans une lettre envoyée à David Hilbert en vue de soutenir la carrière de la mathématicienne.
Exposant critiqueLors d'une transition de phase de deuxième ordre, au voisinage du point critique, les systèmes physiques ont des comportements universels en lois de puissances caractérisées par des exposants critiques. Au point critique, un fluide est caractérisé par une température critique et une densité critique . Pour une température légèrement supérieure à (à nombre de particules et volume constants), le système est homogène avec une densité . Pour une température légèrement inférieure à , il y a une séparation de phase entre une phase liquide (de densité ) et une phase gazeuse (de densité ).
Équation différentielleEn mathématiques, une équation différentielle est une équation dont la ou les « inconnue(s) » sont des fonctions ; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. C'est un cas particulier d'équation fonctionnelle. On distingue généralement deux types d'équations différentielles : les équations différentielles ordinaires (EDO) où la ou les fonctions inconnues recherchées ne dépendent que d'une seule variable ; les équations différentielles partielles, plutôt appelées équations aux dérivées partielles (EDP), où la ou les fonctions inconnues recherchées peuvent dépendre de plusieurs variables indépendantes.
Fonction thêtaEn mathématiques, on appelle fonctions thêta certaines fonctions spéciales d'une ou de plusieurs variables complexes. Elles apparaissent dans plusieurs domaines, comme l'étude des variétés abéliennes, des espaces de modules, et les formes quadratiques. Elles ont aussi des applications à la théorie des solitons. Leurs généralisations en algèbre extérieure apparaissent dans la théorie quantique des champs, plus précisément dans la théorie des cordes et des D-branes.
Équation des ondesL' ou est une équation aux dérivées partielles en physique qui régit la propagation d'une onde. C'est une équation vérifiée par de nombreux phénomènes ondulatoires de la vie courante comme le son ou la lumière. avec : l'opérateur laplacien ; l'onde vectorielle; une constante, vitesse de propagation de dans le milieu considéré ; L'utilisation du laplacien permet de s'affranchir du choix d'un système de coordonnées. avec : l'opérateur de dérivée partielle seconde en appliqué sur ; , les trois variables cartésiennes de l'espace, et celle du temps.
Quadri-momentEn relativité restreinte, le quadri-moment (ou quadrivecteur impulsion ou quadri-impulsion ou quadrivecteur impulsion-énergie ou quadrivecteur énergie-impulsion) est une généralisation du moment linéaire tridimensionnel de la physique classique sous la forme d'un quadrivecteur de l'espace de Minkowski, espace-temps à 4 dimensions de la relativité restreinte. Le quadri-moment d'une particule combine le moment tridimensionnel et d'énergie : Comme tout quadrivecteur, il est covariant, c'est-à-dire que les changements de ses coordonnées lors d'un changement de référentiel inertiel se calculent à l'aide des transformations de Lorentz.
Relativistic angular momentumIn physics, relativistic angular momentum refers to the mathematical formalisms and physical concepts that define angular momentum in special relativity (SR) and general relativity (GR). The relativistic quantity is subtly different from the three-dimensional quantity in classical mechanics. Angular momentum is an important dynamical quantity derived from position and momentum. It is a measure of an object's rotational motion and resistance to changes in its rotation.
Electromagnetic stress–energy tensorIn relativistic physics, the electromagnetic stress–energy tensor is the contribution to the stress–energy tensor due to the electromagnetic field. The stress–energy tensor describes the flow of energy and momentum in spacetime. The electromagnetic stress–energy tensor contains the negative of the classical Maxwell stress tensor that governs the electromagnetic interactions. In free space and flat space–time, the electromagnetic stress–energy tensor in SI units is where is the electromagnetic tensor and where is the Minkowski metric tensor of metric signature (− + + +).
Ramanujan theta functionIn mathematics, particularly q-analog theory, the Ramanujan theta function generalizes the form of the Jacobi theta functions, while capturing their general properties. In particular, the Jacobi triple product takes on a particularly elegant form when written in terms of the Ramanujan theta. The function is named after mathematician Srinivasa Ramanujan. The Ramanujan theta function is defined as for < 1. The Jacobi triple product identity then takes the form Here, the expression denotes the q-Pochhammer symbol.
Tenseur des contraintes de MaxwellLe tenseur des contraintes de Maxwell (nommé en l'honneur de James Clerk Maxwell) est un tenseur de rang 2 utilisé en électromagnétisme classique pour exprimer dans le cas général les forces électromagnétiques. Dans la situation physique la plus simple, constituée d'une charge ponctuelle se déplaçant librement dans un champ magnétique uniforme, on peut calculer aisément la force exercée sur la particule en utilisant la loi de la force de Lorentz.