Perception de la paroleLa perception de la parole est le processus par lequel les humains sont capables d'interpréter et de comprendre les sons utilisés dans le langage. L'étude de la perception de la parole est reliée aux champs de la phonétique, de phonologie en linguistique, de psychologie cognitive et de perception en psychologie. Les recherches dans ce domaine essaient de comprendre comment les auditeurs humains reconnaissent les phonèmes (sons de la paroles) ou autres sons tels que la syllabe ou les rimes, et utilisent cette information pour comprendre le langage parlé.
Perception de la profondeurLa perception de la profondeur est la capacité visuelle à percevoir le monde en trois dimensions. La perception de la profondeur et du relief se base sur différents types d'indices visuels qu'il est possible de classer en trois catégories : en premier lieu ceux qui dépendent du mouvement ; parmi les autres, ceux qui requièrent la vision binoculaire ; enfin, ceux perçus avec un seul œil. Les objets de l'environnement présentent en général plusieurs indices convergents sur leur position dans la profondeur de l'espace.
Cercles d'ArchimèdeEn géométrie, les cercles d’Archimède sont deux cercles de même aire construits à l’intérieur d’un arbelos. Ils apparaissent dans le Livre des lemmes, attribué à l’époque médiévale au mathématicien grec Archimède, d’où leur nom. thumb|upright=1.5|Cercles jumeaux d'Archimède avec le plus petit cercle les contenant On considère un arbelos formé par un demi-cercle de diamètre [AB] ,et deux demi-cercles de diamètres [AM] et [MB] (M étant un point du segment [AB]). Le segment [MC] est la demi-corde perpendiculaire à (AB) passant par M.
Cercle d'EulerEn géométrie, le cercle d'Euler d'un triangle (aussi appelé cercle des neuf points, cercle de Feuerbach, cercle de Terquem, cercle médian) est l'unique cercle passant par les neuf points remarquables suivants : Les trois milieux des trois côtés du triangle ; Le pied de chacune des trois hauteurs du triangle ; Le milieu de chacun des trois segments reliant l'orthocentre H à un sommet du triangle. Dans son mémoire E325 présenté en 1763, Euler a considéré séparément les deux cercles circonscrits aux triangles et sans noter leur coïncidence .
Mesure de BorelIn mathematics, specifically in measure theory, a Borel measure on a topological space is a measure that is defined on all open sets (and thus on all Borel sets). Some authors require additional restrictions on the measure, as described below. Let be a locally compact Hausdorff space, and let be the smallest σ-algebra that contains the open sets of ; this is known as the σ-algebra of Borel sets. A Borel measure is any measure defined on the σ-algebra of Borel sets.
Tangente à un cercleEn géométrie plane euclidienne, une tangente au cercle est une droite qui touche un cercle en un point unique, sans passer par l'intérieur du cercle. Les droites tangents aux cercles sont le sujet de nombreux théorèmes, et apparaissent dans de nombreuses constructions à la règle et au compas et des preuves. Une propriété souvent utilisée dans ces théorèmes est que la tangente en un point du cercle est orthogonale au rayon du cercle passant par le point de contact.
Mémoire spatialevignette|La mémoire spatiale est nécessaire pour naviguer dans un environnement. La mémoire spatiale est la partie de la mémoire d'un individu responsable de l'enregistrement des informations concernant l'espace environnant et l'orientation spatiale de l'individu dans celui-ci. La mémoire spatiale est ainsi requise pour la navigation spatiale dans un lieu connu, comme dans un quartier familier. Elle est étudiée en neuroscience (chez le rat) et en psychologie cognitive (chez l'homme).
Ordre totalEn mathématiques, on appelle relation d'ordre total sur un ensemble E toute relation d'ordre ≤ pour laquelle deux éléments de E sont toujours comparables, c'est-à-dire que On dit alors que E est totalement ordonné par ≤. Une relation binaire ≤ sur un ensemble E est un ordre total si (pour tous éléments x, y et z de E) : x ≤ x (réflexivité) ; si x ≤ y et y ≤ x, alors x = y (antisymétrie) ; si x ≤ y et y ≤ z, alors x ≤ z (transitivité) ; x ≤ y ou y ≤ x (totalité). Les trois premières propriétés sont celles faisant de ≤ une relation d'ordre.
Ordre lexicographiqueEn mathématiques, un ordre lexicographique est un ordre que l'on définit sur les suites finies d'éléments d'un ensemble ordonné (ou, de façon équivalente, les mots construits sur un ensemble ordonné). Sa définition est une généralisation de l'ordre du dictionnaire : l'ensemble ordonné est l'alphabet, les mots sont bien des suites finies de lettres de l'alphabet. La principale propriété de l'ordre lexicographique est de conserver la totalité de l'ordre initial.
Technique d'affichageLa technique d'affichage est le moyen de présentation d'une information au moyen de divers phénomènes physiques ou chimiques. Les premiers afficheurs furent statiques (pierres, affiches, affichage libre, peinture). Le premier afficheur dynamique est peut-être le cadran solaire. Le développement de la mécanique permit l'affichage mécanique de l'heure (horlogerie). La commande par câble permit l'affichage à distance pour la signalisation des chemins de fer.