Vuethumb|250px|Ommatidies de krill antarctique, composant un œil primitif adapté à une vision sous-marine. thumb|250px|Yeux de triops, primitifs et non mobiles. thumb|250px|Yeux multiples d'une araignée sauteuse (famille des Salticidae, composée d'araignées chassant à l'affut, mode de chasse nécessitant une très bonne vision). thumb|250px|Œil de la libellule Platycnemis pennipes, offrant un champ de vision très large, adapté à un comportement de prédation.
Connaissance tacitevignette|Le sergent d'état-major. Anette Aldridge de West Jordan, Utah, une linguiste française servant avec la compagnie C, 142e bataillon de renseignement militaire, Les connaissances tacites regroupent les compétences innées ou acquises, le savoir-faire et l'expérience. Elles sont généralement difficiles à « formaliser » par opposition aux connaissances explicites. Dans une entreprise, la connaissance tacite peut s'assimiler au capital intellectuel. C'est un actif intangible.
AssociativitéEn mathématiques, et plus précisément en algèbre générale, une loi de composition interne ou loi interne sur un ensemble E est dite associative si pour tous x, y et z dans E : En notant , l'associativité se traduit par le diagramme commutatif suivant : Parmi les lois associatives, on peut citer les lois d'addition et de multiplication des nombres réels, des nombres complexes et des matrices carrées, l'addition des vecteurs, et l'intersection, la réunion d'ensembles.
Non-associative algebraA non-associative algebra (or distributive algebra) is an algebra over a field where the binary multiplication operation is not assumed to be associative. That is, an algebraic structure A is a non-associative algebra over a field K if it is a vector space over K and is equipped with a K-bilinear binary multiplication operation A × A → A which may or may not be associative. Examples include Lie algebras, Jordan algebras, the octonions, and three-dimensional Euclidean space equipped with the cross product operation.
AdditionL'addition est une opération élémentaire, permettant notamment de décrire la réunion de quantités ou l'adjonction de grandeurs extensives de même nature, comme les longueurs, les aires, ou les volumes. En particulier en physique, l'addition de deux grandeurs ne peut s'effectuer numériquement que si ces grandeurs sont exprimées avec la même unité de mesure. Le résultat d'une addition est appelé une somme, et les nombres que l'on additionne, les termes.
IncrémentationEn informatique, l'incrémentation est l'opération qui consiste à ajouter 1 (et par extension toute valeur entière fixée) à un compteur. L'opération inverse, la décrémentation, consiste à retirer 1 (ou toute valeur entière fixée) au compteur. Cette opération est très courante dans les programmes informatiques, notamment dans les boucles d'itération, si bien que la plupart des langages de programmation implémentent des opérateurs d'incrémentation et de décrémentation.
Quadrature du cerclevignette|Le carré de côté a la même aire que le cercle de rayon 1. La quadrature du cercle est un problème classique de mathématiques apparaissant en géométrie. Il fait partie des trois grands problèmes de l'Antiquité, avec la trisection de l'angle et la duplication du cube. Le problème consiste à construire un carré de même aire qu'un disque donné à l'aide d'une règle et d'un compas (voir Nombre constructible). La quadrature du cercle nécessiterait la construction à la règle et au compas de la racine carrée du nombre π, ce qui est impossible en raison de la transcendance de π.
Somme (arithmétique)En mathématiques, la somme de deux nombres est le résultat de leur addition. Les éléments additionnés s’appellent les termes de la somme. Elle se calcule de différentes manières selon le système de numération employé. Du fait de la commutativité et de l'associativité de l'addition, la somme d'un ensemble fini de nombres est bien définie indépendamment de l'ordre dans lequel est faite l'addition, mais il n'existe pas toujours de formule réduite pour l'exprimer.
SoustractionLa soustraction est l'une des opérations basiques de l'arithmétique. La soustraction combine deux ou plusieurs grandeurs du même type, appelées opérandes, pour donner un seul nombre, appelé la différence. Soustraire signifie diminuer en comptant. Soustraire b de a (calculer a − b) c'est trouver le nombre qui complèterait b pour donner a, c'est-à-dire le nombre d tel que b + d = a Le signe de soustraction est le symbole « − ». Par exemple : on lit 3 − 2 = 1 comme « trois moins deux font un ».
Associativité des puissancesEn algèbre, l'associativité des puissances est une forme affaiblie de l'associativité. Un magma est dit associatif des puissances si le sous-magma engendré par n'importe quel élément est associatif. Concrètement, cela signifie que si une opération est effectuée plusieurs fois sur un même élément , l'ordre dans lequel sont effectuées ces opérations n'a pas d'importance ; ainsi, par exemple, . Tout magma associatif est évidemment associatif des puissances.