L'état d'un système physique décrit tous les aspects de ce système, dans le but de prévoir les résultats des expériences que l'on peut réaliser. Le fait que la mécanique quantique soit non déterministe entraîne une différence fondamentale par rapport à la description faite en mécanique classique : alors qu'en physique classique, l'état du système détermine de manière absolue les résultats de mesure des grandeurs physiques, une telle chose est impossible en physique quantique et la connaissance de l'état permet seulement de prévoir, de façon toutefois parfaitement reproductible, les probabilités respectives des différents résultats qui peuvent être obtenus à la suite de la réduction du paquet d'onde lors de la mesure d'un système quantique.
Les nombres quantiques sont des ensembles de nombres définissant l'état quantique d'un système. Chacun de ces nombres définit la valeur d'une quantité conservée dans la dynamique d'un système quantique. Ce sont des nombres entiers ou demi-entiers, de sorte que les grandeurs observables correspondantes sont quantifiées et ne peuvent prendre que des valeurs discrètes : c'est une différence fondamentale entre la mécanique quantique et la mécanique classique, dans laquelle toutes ces grandeurs peuvent prendre des valeurs continues.
vignette|Modèle de Bohr illustrant les niveaux d'énergie d'un atome. En mécanique quantique, le nombre quantique principal, noté n, est l'un des quatre nombres quantiques décrivant l'état quantique des électrons dans les atomes. Il s'agit d'un nombre entier non nul, c'est-à-dire vérifiant . Chaque nombre n est associé à une couche électronique dans l'atome : couche K pour , couche L pour , couche M pour La distance moyenne de l'électron au noyau atomique croît en fonction de n : la couche K est ainsi la plus profonde dans l'atome, et les autres couches s'organisent de manière concentrique autour du noyau.
La mécanique des milieux continus est le domaine de la mécanique qui s’intéresse à la déformation des solides et à l’ des fluides. Ce dernier point faisant l’objet de l’article Mécanique des fluides, cet article traite donc essentiellement de la mécanique des solides déformables. Le tableau suivant indique les divers domaines couverts par la mécanique des milieux continus. Si l'on regarde la matière de « très près » (échelle nanoscopique), la matière est granulaire, faite de molécules.
vignette|Fissure d'un acier trempé provoquée par de l'hydrogène, observée au microscopie électronique à balayage. La fragilisation par l'hydrogène est un phénomène de fissuration de certains métaux au contact de l'hydrogène. Le rôle de l'hydrogène dissous dans un métal est connu depuis la fin du , mais encore incomplètement compris. Dès 1983, Airey et Van Rooyen démontrent qu'une présence d'hydrogène dissous dans le milieu environnant d'un métal peut aggraver le risque de corrosion, notamment de corrosion sous contrainte.
thumb|upright=1.2|Schéma du modèle diathèse–stress : en horizontal, le vécu va de très négatif à très positif ; en vertical en représentée la conséquence pour une personne "solide" (noir) ou vulnérable (rouge) Le modèle diathèse–stress est une théorie psychologique tentant d'expliquer certains comportements humains par la conjonction d'une vulnérabilité héréditaire et de stress important issu d'expériences vécues.
La catastrophe du Vol 587 American Airlines s'explique par la rupture de la dérive de l'appareil.|vignette La mécanique de la rupture tend à définir une propriété du matériau qui peut se traduire par sa résistance à la rupture fragile (fracture) ou ductile. Car si les structures sont calculées pour que les contraintes nominales ne dépassent pas, en règle générale, la limite d'élasticité du matériau et soient donc par voie de conséquence à l'abri de la ruine par rupture de type ductile ; elles ne sont pas systématiquement à l'abri d'une ruine causée par la présence d'une fissure préexistante à la mise en service ou créée en service par fatigue (comme lors de la catastrophe ferroviaire de Meudon) ou par corrosion sous contrainte.
Le 'stress chez l'humain' qualifie à la fois une situation contraignante et les processus physiologiques mis en place par l'organisme pour s'y adapter. Chez l'adulte, le stress peut avoir des origines physiques, pathogéniques (ayant une maladie génétique, infectieuse ou parasitaire comme origine par exemple), socio-psychiques, médiées par divers processus hormonaux (hormones, ou molécules de stress), chimiques et biochimiques de l'organisme.
En mécanique quantique, la valeur moyenne, ou espérance quantique, est la valeur moyenne prédite pour le résultat d'une expérience. C'est un concept fondamental pour tous les domaines de la physique quantique. La physique quantique présente un comportement statistique fondamental : le résultat d'une mesure expérimentale ne sera pas, en général, le même si l'expérience est répétée plusieurs fois. Ce n'est que la moyenne statistique des valeurs mesurées dans un grand nombre de répétitions de l'expérience qui est une quantité reproductible.
En mécanique quantique, le nombre quantique secondaire, noté l, également appelé nombre quantique azimutal, est l'un des quatre nombres quantiques décrivant l'état quantique d'un électron dans un atome. Il s'agit d'un nombre entier positif ou nul lié au nombre quantique principal n par la relation : . Il correspond au moment angulaire orbital de l'électron, et définit les sous-couches électroniques des atomes, tandis que le nombre quantique principal n définit les couches électroniques.