Groupe réductifEn mathématiques, un groupe réductif est un groupe algébrique G sur un corps algébriquement clos tel que le radical unipotent de G (c'est-à-dire le sous-groupe des éléments unipotents de ) soit trivial. Tout est réductif, de même que tout tore algébrique et tout groupe général linéaire. Plus généralement, sur un corps k non nécessairement algébriquement clos, un groupe réductif est un groupe algébrique affine lisse G tel que le radical unipotent de G sur la clôture algébrique de k soit trivial.
Espace de FréchetUn espace de Fréchet est une structure mathématique d'espace vectoriel topologique satisfaisant certains théorèmes relatifs aux espaces de Banach même en l'absence d'une norme. Cette dénomination fait référence à Maurice Fréchet, mathématicien français ayant participé notamment à la fondation de la topologie et à ses applications en analyse fonctionnelle. C'est dans ce dernier domaine que la structure des espaces de Fréchet se révèle particulièrement utile, notamment en fournissant une topologie naturelle aux espaces de fonctions infiniment dérivables et aux espaces de distributions.
Topologie de la droite réellethumb|Richard Dedekind (1831 - 1916) a défini rigoureusement les nombres réels et posé les bases de leur étude topologique. La topologie de la droite réelle (ou topologie usuelle de R) est une structure mathématique qui donne, pour l'ensemble des nombres réels, des définitions précises aux notions de limite et de continuité. Historiquement, ces notions se sont développées autour de la notion de nombre (approcher des nombres comme la racine carrée de deux ou pi par d'autres plus « maniables ») et de la géométrie de la droite (à laquelle l'espace topologique des nombres réels peut être assimilé), du plan et de l'espace usuels.
F-spaceIn functional analysis, an F-space is a vector space over the real or complex numbers together with a metric such that Scalar multiplication in is continuous with respect to and the standard metric on or Addition in is continuous with respect to The metric is translation-invariant; that is, for all The metric space is complete. The operation is called an F-norm, although in general an F-norm is not required to be homogeneous. By translation-invariance, the metric is recoverable from the F-norm.
Ricci-flat manifoldIn the mathematical field of differential geometry, Ricci-flatness is a condition on the curvature of a (pseudo-)Riemannian manifold. Ricci-flat manifolds are a special kind of Einstein manifold. In theoretical physics, Ricci-flat Lorentzian manifolds are of fundamental interest, as they are the solutions of Einstein's field equations in vacuum with vanishing cosmological constant. In Lorentzian geometry, a number of Ricci-flat metrics are known from works of Karl Schwarzschild, Roy Kerr, and Yvonne Choquet-Bruhat.
Symbole de Levi-CivitaEn mathématiques, le symbole de Levi-Civita, noté ε (lettre grecque epsilon), est un objet antisymétrique d'ordre 3 qui peut être exprimé à partir du symbole de Kronecker : Ainsi, ne peut prendre que trois valeurs : –1, 0 ou 1. En dimension 3, on peut figurer le symbole de Levi-Civita comme suit : On remarque que si , et , alors représente une permutation et le symbole de Levi-Civita correspondant est sa signature.
Applications ouvertes et ferméesEn mathématiques, et plus précisément en topologie, une application ouverte est une application entre deux espaces topologiques envoyant les ouverts de l'un vers des ouverts de l'autre. De même, une application fermée envoie les fermés du premier espace vers des fermés du second. Soit deux espaces topologiques X et Y ; on dit qu'une application f de X vers Y est ouverte si pour tout ouvert U de X, l' f(U) est ouverte dans Y ; de même, on dit que f est fermée si pour tout fermé U de X, l'image f(U) est fermée dans Y.
DifféomorphismeEn mathématiques, un difféomorphisme est un isomorphisme dans la catégorie usuelle des variétés différentielles : c'est une bijection différentiable d'une variété dans une autre, dont la bijection réciproque est aussi différentiable. vignette|Image d'une grille à maille carrée par un difféomorphisme du carré dans lui-même. Soient : E et F deux espaces vectoriels normés réels de dimension finie ; U un ouvert de E, V un ouvert de F ; f une application de U dans V.
Gromov's compactness theorem (geometry)In the mathematical field of metric geometry, Mikhael Gromov proved a fundamental compactness theorem for sequences of metric spaces. In the special case of Riemannian manifolds, the key assumption of his compactness theorem is automatically satisfied under an assumption on Ricci curvature. These theorems have been widely used in the fields of geometric group theory and Riemannian geometry. The Gromov–Hausdorff distance defines a notion of distance between any two metric spaces, thereby setting up the concept of a sequence of metric spaces which converges to another metric space.
Real projective lineIn geometry, a real projective line is a projective line over the real numbers. It is an extension of the usual concept of a line that has been historically introduced to solve a problem set by visual perspective: two parallel lines do not intersect but seem to intersect "at infinity". For solving this problem, points at infinity have been introduced, in such a way that in a real projective plane, two distinct projective lines meet in exactly one point.