Spin connectionIn differential geometry and mathematical physics, a spin connection is a connection on a spinor bundle. It is induced, in a canonical manner, from the affine connection. It can also be regarded as the gauge field generated by local Lorentz transformations. In some canonical formulations of general relativity, a spin connection is defined on spatial slices and can also be regarded as the gauge field generated by local rotations.
Lexique de la géométrie riemannienneLa géométrie riemannienne est un domaine des mathématiques étudiant les propriétés des variétés riemanniennes. Cette page rappelle brièvement les définitions des termes récurrents rencontrés. Application conforme : Entre deux variétés riemanniennes, application qui préserve les angles ; de manière équivalente application qui transporte une métrique en une métrique conforme ; Application exponentielle : Application différentiable définie naturellement pour toute variété riemannienne complète.
Curvature of Riemannian manifoldsIn mathematics, specifically differential geometry, the infinitesimal geometry of Riemannian manifolds with dimension greater than 2 is too complicated to be described by a single number at a given point. Riemann introduced an abstract and rigorous way to define curvature for these manifolds, now known as the Riemann curvature tensor. Similar notions have found applications everywhere in differential geometry of surfaces and other objects. The curvature of a pseudo-Riemannian manifold can be expressed in the same way with only slight modifications.
Ensemble maigreEn topologie, dans le contexte des espaces de Baire, un ensemble maigre (on dit aussi de première catégorie) est une partie d'un espace de Baire qui, en un sens technique, peut être considérée comme de taille infime. Un ensemble comaigre est le complémentaire d'un ensemble maigre. Une partie qui n'est pas maigre est dite de deuxième catégorie. Un sous-ensemble d'un espace topologique E est dit maigre lorsqu'il est contenu dans une réunion dénombrable de fermés de E qui sont tous d'intérieur vide.
Triplet de GelfandEn analyse fonctionnelle, le triplet de Gelfand (aussi triplet de Banach-Gelfand ou triade hilbertienne ou rigged Hilbert space) est un espace-triplet consistant en un espace de Hilbert , un espace de Banach (ou plus généralement un espace vectoriel topologique) et son dual topologique . L'espace est choisi tel que soit un sous-espace dense dans et que son inclusion soitcontinue. Cette construction a l'avantage que les éléments de peuvent être exprimés comme des éléments de l'espace dual en utilisant le théorème de représentation de Fréchet-Riesz.
Géométrie symplectiqueLa géométrie symplectique est un domaine de la recherche mathématique, s'intéressant à l'origine à une formulation mathématique naturelle de la mécanique classique et développé avec une notion d'entrelacement entre la géométrie différentielle et les systèmes dynamiques, avec des applications en géométrie algébrique, en géométrie riemannienne et en géométrie de contact. Formellement, elle consiste en l'étude des 2-formes différentielles fermées non dégénérées — appelées formes symplectiques — sur les variétés différentielles.
Connexion de KoszulEn géométrie différentielle, une connexion (de Koszul) est un opérateur sur les sections d'un fibré vectoriel. Cette notion a été introduite par Jean-Louis Koszul en 1950 et formalise le transport parallèle de vecteurs le long d'une courbe en termes d'équation différentielle ordinaire. Les connexions sont des objets localement définis auxquels sont associées les notions de courbure et de torsion. L'un des exemples les plus simples de connexions de Koszul sans torsion est la connexion de Levi-Civita naturellement définie sur le fibré tangent de toute variété riemannienne.
Groupe (mathématiques)vignette|Les manipulations possibles du Rubik's Cube forment un groupe. En mathématiques, un groupe est une des structures algébriques fondamentales de l'algèbre générale. C'est un ensemble muni d'une loi de composition interne associative admettant un élément neutre et, pour chaque élément de l'ensemble, un élément symétrique. La structure de groupe est commune à de nombreux ensembles de nombres — par exemple les nombres entiers relatifs, munis de la loi d'addition.
Partie denseEn topologie, une partie dense d'un espace topologique est un sous-ensemble permettant d'approcher tous les éléments de l'espace englobant. La notion s'oppose ainsi à celle de partie nulle part dense. La densité d'une partie permet parfois d'étendre la démonstration d'une propriété ou la définition d'une application par continuité. Soient X un espace topologique et A une partie de X.
Espace réflexifEn analyse fonctionnelle, un espace vectoriel normé est dit réflexif si l'injection naturelle dans son bidual topologique est surjective. Les espaces réflexifs possèdent d'intéressantes propriétés géométriques. Soit un espace vectoriel normé, sur ou . On note son dual topologique, c'est-à-dire l'espace (de Banach) des formes linéaires continues de dans le corps de base. On peut alors former le bidual topologique , qui est le dual topologique de . Il existe une application linéaire continue naturelle définie par pour tout dans et dans .