Problème de la hiérarchieEn physique théorique, le problème de la hiérarchie concerne la divergence considérable entre les propriétés de la force faible et celles de la force gravitationnelle. Il n'y a aucun consensus scientifique sur ses causes, par exemple pourquoi la force faible est 10 fois plus intense que la gravitation ? Un problème de hiérarchie apparaît quand la valeur fondamentale d'un paramètre physique, tel qu'une constante de couplage ou une masse, dans un lagrangien est profondément différente de sa valeur mesurée (dite « effective ») lors d'une expérience.
Indépendance linéaireEn algèbre linéaire, étant donné une famille de vecteurs d'un même espace vectoriel, les vecteurs de la famille sont linéairement indépendants, ou forment une famille libre, si la seule combinaison linéaire de ces vecteurs qui soit égale au vecteur nul est celle dont tous les coefficients sont nuls. Cela revient à dire qu'aucun des vecteurs de la famille n'est combinaison linéaire des autres. Dans le cas où des vecteurs ne sont pas linéairement indépendants, on dit qu'ils sont linéairement dépendants, ou qu'ils forment une famille liée.
SupersymétrieLa supersymétrie (abrégée en SuSy) est une symétrie supposée de la physique des particules qui postule une relation profonde entre les particules de spin demi-entier (les fermions) qui constituent la matière et les particules de spin entier (les bosons) véhiculant les interactions. Dans le cadre de la SuSy, chaque fermion est associé à un « superpartenaire » de spin entier, alors que chaque boson est associé à un « superpartenaire » de spin demi-entier.
Chirality (physics)A chiral phenomenon is one that is not identical to its (see the article on mathematical chirality). The spin of a particle may be used to define a handedness, or helicity, for that particle, which, in the case of a massless particle, is the same as chirality. A symmetry transformation between the two is called parity transformation. Invariance under parity transformation by a Dirac fermion is called chiral symmetry. Helicity (particle physics) The helicity of a particle is positive (“right-handed”) if the direction of its spin is the same as the direction of its motion.
Nombre de GrassmannEn physique mathématique, un nombre de Grassmann — ainsi nommé d'après Hermann Günther Grassmann mais aussi appelé supernombre — est un élément de l'algèbre extérieure — ou algèbre de Grassmann — d'un espace vectoriel, le plus souvent sur les nombres complexes. Dans le cas particulier où cet espace est une droite vectorielle réelle, un tel nombre s'appelle un nombre dual. Les nombres de Grassmann ont d'abord été employés en physique pour exprimer une représentation par intégrales de chemins pour les champs de fermions, mais sont à présent largement utilisés pour décrire le sur lequel on définit une supersymétrie.
Combinaison linéaireEn mathématiques, une combinaison linéaire est une expression construite à partir d'un ensemble de termes en multipliant chaque terme par une constante et en ajoutant le résultat. Par exemple, une combinaison linéaire de x et y serait une expression de la forme ax + by, où a et b sont des constantes. Le concept de combinaison linéaire est central en algèbre linéaire et dans des domaines connexes des mathématiques. La majeure partie de cet article traite des combinaisons linéaires dans le contexte d'espace vectoriel sur un corps commutatif, et indique quelques généralisations à la fin de l'article.
Théorème spin-statistiqueLe théorème spin-statistique relie le spin d'une particule et le type de statistique qu'elle suit. Selon lui, les particules de spin entier sont des bosons, alors que les particules de spin demi-entier sont des fermions. Le théorème spin-statistique est le théorème selon lequel, dans un espace tridimensionnel, les particules élémentaires de spin demi-entier obéissent à la statistique de Fermi-Dirac ; et celles de spin entier, à la statistique de Bose-Einstein. La théorème n'est pas valable en une ou deux dimensions.
Forme linéaireEn algèbre linéaire, une forme linéaire sur un espace vectoriel est une application linéaire sur son corps de base. En dimension finie, elle peut être représentée par une matrice ligne qui permet d’associer à son noyau une équation cartésienne. Dans le cadre du calcul tensoriel, une forme linéaire est aussi appelée covecteur, en lien avec l’action différente des matrices de changement de base.
Algèbre linéairevignette|R3 est un espace vectoriel de dimension 3. Droites et plans qui passent par l'origine sont des sous-espaces vectoriels. L’algèbre linéaire est la branche des mathématiques qui s'intéresse aux espaces vectoriels et aux transformations linéaires, formalisation générale des théories des systèmes d'équations linéaires. L'algèbre linéaire est initiée dans son principe par le mathématicien perse Al-Khwârizmî qui s'est inspiré des textes de mathématiques indiens et qui a complété les travaux de l'école grecque, laquelle continuera de se développer des siècles durant.
Histoire et chronologie de l'Universvignette|upright=1.5|Schéma simplifié des principales étapes de la formation de l'Univers.1- Big Bang.2- Ère de l'inflation.3- Découplage de l'interaction forte et faible et formation des particules.4- Formation des étoiles et galaxies. Lhistoire et la chronologie de l'Univers décrit l'évolution de l’Univers en s'appuyant sur le modèle standard de la cosmologie, fondé sur le modèle cosmologique du Big Bang et les recherches en cosmologie et en astronomie. Selon plusieurs estimations, l'âge de l'Univers serait d'environ d'années.