Matrice (mathématiques)thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.
Matrice inversibleEn mathématiques et plus particulièrement en algèbre linéaire, une matrice inversible (ou régulière ou encore non singulière) est une matrice carrée A pour laquelle il existe une matrice B de même taille n avec laquelle les produits AB et BA sont égaux à la matrice identité. Dans ce cas la matrice B est unique, appelée matrice inverse de A et notée B = A. Cette définition correspond à celle d’élément inversible pour la multiplication dans l’anneau des matrices carrées associé.
Nombre quantiqueLes nombres quantiques sont des ensembles de nombres définissant l'état quantique d'un système. Chacun de ces nombres définit la valeur d'une quantité conservée dans la dynamique d'un système quantique. Ce sont des nombres entiers ou demi-entiers, de sorte que les grandeurs observables correspondantes sont quantifiées et ne peuvent prendre que des valeurs discrètes : c'est une différence fondamentale entre la mécanique quantique et la mécanique classique, dans laquelle toutes ces grandeurs peuvent prendre des valeurs continues.
Matrice diagonaleEn algèbre linéaire, une matrice diagonale est une matrice carrée dont les coefficients en dehors de la diagonale principale sont nuls. Les coefficients de la diagonale peuvent être ou ne pas être nuls. Une matrice diagonale est une matrice qui correspond à la représentation d'un endomorphisme diagonalisable dans une base de vecteurs propres. La matrice d'un endomorphisme diagonalisable est semblable à une matrice diagonale. Toute matrice diagonale est symétrique, normale et triangulaire.
Nombre quantique principalvignette|Modèle de Bohr illustrant les niveaux d'énergie d'un atome. En mécanique quantique, le nombre quantique principal, noté n, est l'un des quatre nombres quantiques décrivant l'état quantique des électrons dans les atomes. Il s'agit d'un nombre entier non nul, c'est-à-dire vérifiant . Chaque nombre n est associé à une couche électronique dans l'atome : couche K pour , couche L pour , couche M pour La distance moyenne de l'électron au noyau atomique croît en fonction de n : la couche K est ainsi la plus profonde dans l'atome, et les autres couches s'organisent de manière concentrique autour du noyau.
Nombre quantique magnétiquevignette|Levée de dégénérescence des niveaux d'énergie électroniques par effet Zeeman. En mécanique quantique, le nombre quantique magnétique, noté m, également appelé nombre quantique tertiaire, est l'un des quatre nombres quantiques décrivant l'état quantique d'un électron dans un atome. Il s'agit d'un nombre entier lié au nombre quantique azimutal l par la relation : . Il correspond à la projection du moment angulaire orbital de l'électron sur l'axe de quantification, et distingue les orbitales atomiques au sein des sous-couches électroniques.
Nombre quantique secondaireEn mécanique quantique, le nombre quantique secondaire, noté l, également appelé nombre quantique azimutal, est l'un des quatre nombres quantiques décrivant l'état quantique d'un électron dans un atome. Il s'agit d'un nombre entier positif ou nul lié au nombre quantique principal n par la relation : . Il correspond au moment angulaire orbital de l'électron, et définit les sous-couches électroniques des atomes, tandis que le nombre quantique principal n définit les couches électroniques.
Informatique quantiqueL'informatique quantique est le sous-domaine de l'informatique qui traite des calculateurs quantiques et des associés. La notion s'oppose à celle d'informatique dite « classique » n'utilisant que des phénomènes de physique classique, notamment de l'électricité (exemple du transistor) ou de mécanique classique (exemple historique de la machine analytique). En effet, l'informatique quantique utilise également des phénomènes de la mécanique quantique, à savoir l'intrication quantique et la superposition.
Spin quantum numberIn physics, the spin quantum number is a quantum number (designated s) that describes the intrinsic angular momentum (or spin angular momentum, or simply spin) of an electron or other particle. It has the same value for all particles of the same type, such as s = 1/2 for all electrons. It is an integer for all bosons, such as photons, and a half-odd-integer for all fermions, such as electrons and protons. The component of the spin along a specified axis is given by the spin magnetic quantum number, conventionally written ms.
État fondamentalL'état fondamental est, en physique, une notion polysémique renvoyant généralement à un état de plus basse énergie pour un électron, ou de plus grande neutralité électrique pour un atome.vignette|Différents niveaux d'énergie d'un électron dans un atome : l'état fondamental et les états excités. Après avoir absorbé de l'énergie, un électron peut passer de l'état fondamental à un état excité de plus haute énergie. En physique quantique, les états fondamentaux d'un système sont les états quantiques de plus basse énergie.