Réduction polynomialeUne réduction polynomiale est un outil d'informatique théorique, plus particulièrement de théorie de la complexité. C'est une classe particulière de réductions particulièrement importante, notamment pour le problème P = NP. Dans le cadre des langages formels pour les problèmes de décision, on dit qu'un langage est réductible en temps polynomial à un langage (noté ) s'il existe une fonction calculable en temps polynomial telle que pour tout , si et seulement si .
Complexité en tempsEn algorithmique, la complexité en temps est une mesure du temps utilisé par un algorithme, exprimé comme fonction de la taille de l'entrée. Le temps compte le nombre d'étapes de calcul avant d'arriver à un résultat. Habituellement, le temps correspondant à des entrées de taille n est le temps le plus long parmi les temps d’exécution des entrées de cette taille ; on parle de complexité dans le pire cas. Les études de complexité portent dans la majorité des cas sur le comportement asymptotique, lorsque la taille des entrées tend vers l'infini, et l'on utilise couramment les notations grand O de Landau.
Schéma d'approximation en temps polynomialEn informatique, un schéma d'approximation en temps polynomial (en anglais polynomial-time approximation scheme, abrégé en PTAS) est une famille d'algorithmes d'approximation pour des problèmes d'optimisation combinatoire. On dit aussi plus simplement schéma d'approximation polynomial. Le plus souvent, les problèmes d'optimisation combinatoire considérés sont NP-difficiles. Plusieurs variantes des PTAS existent : des définitions plus restrictives comme les EPTAS et FPTAS, ou d'autres qui reposent sur les algorithmes probabilistes comme les PRAS et FPRAS.
Acquisition compriméeL'acquisition comprimée (en anglais compressed sensing) est une technique permettant de trouver la solution la plus parcimonieuse d'un système linéaire sous-déterminé. Elle englobe non seulement les moyens pour trouver cette solution mais aussi les systèmes linéaires qui sont admissibles. En anglais, elle porte le nom de Compressive sensing, Compressed Sampling ou Sparse Sampling.
Régression linéaireEn statistiques, en économétrie et en apprentissage automatique, un modèle de régression linéaire est un modèle de régression qui cherche à établir une relation linéaire entre une variable, dite expliquée, et une ou plusieurs variables, dites explicatives. On parle aussi de modèle linéaire ou de modèle de régression linéaire. Parmi les modèles de régression linéaire, le plus simple est l'ajustement affine. Celui-ci consiste à rechercher la droite permettant d'expliquer le comportement d'une variable statistique y comme étant une fonction affine d'une autre variable statistique x.
Sparse approximationSparse approximation (also known as sparse representation) theory deals with sparse solutions for systems of linear equations. Techniques for finding these solutions and exploiting them in applications have found wide use in , signal processing, machine learning, medical imaging, and more. Consider a linear system of equations , where is an underdetermined matrix and . The matrix (typically assumed to be full-rank) is referred to as the dictionary, and is a signal of interest.
Relaxation continueEn informatique théorique et en recherche opérationnelle, la relaxation continue est une méthode qui consiste à interpréter de façon continue un problème combinatoire ou discret. Cette méthode est utilisée afin d'obtenir des informations sur le problème discret initial et parfois même pour obtenir sa solution. Les problèmes discrets ou combinatoires sont en effet très difficiles à traiter en raison de l'explosion combinatoire et il est courant de les traiter par une méthode de séparation et évaluation (branch and bound en anglais) : la relaxation continue fait partie des algorithmes d'évaluation nécessaire à la mise en œuvre de cette méthode.
NP-difficilevignette|300px|Mise en évidence d'un problème NP-difficile si Problème P ≟ NP. Un problème NP-difficile est, en théorie de la complexité, un problème appartenant à la classe NP-difficile, ce qui revient à dire qu'il est au moins aussi difficile que les problèmes les plus difficiles de la classe NP. Ainsi, un problème H est NP-difficile, si tout problème L de la classe NP peut être réduit en temps polynomial à H. Si un problème NP-difficile est dans NP, alors c'est un problème NP-complet.
Polynômethumb|Courbe représentative d'une fonction cubique. En mathématiques, un polynôme est une expression formée uniquement de produits et de sommes de constantes et d'indéterminées, habituellement notées X, Y, Z... Ces objets sont largement utilisés en pratique, ne serait-ce que parce qu'ils donnent localement une valeur approchée de toute fonction dérivable (voir l'article Développement limité) et permettent de représenter des formes lisses (voir l'article Courbe de Bézier, décrivant un cas particulier de fonction polynomiale).
Temps de calcul pseudo-polynomialEn informatique théorique, et notamment en théorie de la complexité, un algorithme est appelé pseudo-polynomial si sa complexité en temps est un polynôme en la valeur numérique de l'entrée (mais pas nécessairement en la taille en mémoire de l'entrée). Considérons le problème du test de primalité. On peut vérifier qu'un entier naturel donné n est premier en testant qu'il n'est divisible par aucun des entiers . Cela exige divisions, de sorte que le temps pris par cet algorithme naïf est linéaire en la valeur n .