Axiomes des probabilitésEn théorie des probabilités, les axiomes de probabilités, également appelés axiomes de Kolmogorov du nom d'Andreï Nikolaievitch Kolmogorov qui les a développés, désignent les propriétés que doit vérifier une application afin de formaliser l'idée de probabilité. Ces propriétés peuvent être résumées ainsi : si est une mesure sur un espace mesurable , alors doit être un espace de probabilité. Le théorème de Cox fournit une autre approche pour formaliser les probabilités, privilégiée par certains bayésiens.
Graphe (mathématiques discrètes)Dans le domaine des mathématiques discrètes, la théorie des graphes définit le graphe, une structure composée d'objets et de relations entre deux de ces objets. Abstraitement, lesdits objets sont appelés sommets (ou nœuds ou points), et les relations entre eux sont nommées arêtes (ou liens ou lignes). On distingue les graphes non orientés, où les arêtes relient deux sommets de manière symétrique, et les graphes orientés, où les arêtes, alors appelées arcs (ou flèches), relient deux sommets de manière asymétrique.
Loi des grands nombresvignette|Visualisation de la loi des grands nombres En mathématiques, la loi des grands nombres permet d’interpréter la probabilité comme une fréquence de réalisation, justifiant ainsi le principe des sondages, et présente l’espérance comme une moyenne. Plus formellement, elle signifie que la moyenne empirique, calculée sur les valeurs d’un échantillon, converge vers l’espérance lorsque la taille de l’échantillon tend vers l’infini. Plusieurs théorèmes expriment cette loi, pour différents types de convergence en théorie des probabilités.
Probabilité conditionnellevignette|Illustration des probabilités conditionnelles avec un diagramme d'Euler. On a la probabilité a priori et les probabilités conditionnelles , et .|320x320px En théorie des probabilités, une probabilité conditionnelle est la probabilité d'un événement sachant qu'un autre événement a eu lieu. Par exemple, si une carte d'un jeu est tirée au hasard, on estime qu'il y a une chance sur quatre d'obtenir un cœur ; mais si on aperçoit un reflet rouge sur la table, il y a maintenant une chance sur deux d'obtenir un cœur.
Automate quantiqueEn informatique quantique et en informatique théorique, un automate fini quantique est une généralisation des automates finis où un mot est accepté selon le résultat d'une certaine mesure. Il existe plusieurs modèles des automates finis quantiques ; le plus restrictif est celui des automates dits « measure-once » de ; un autre est celui des automates « measure-many » de . Ces deux modèles sont très différents l'un de l’autre ; le modèle « measure-once » se rapproche plus de la théorie classique des automates finis.
Séquence conservéeEn biologie de l'évolution, les séquences conservées sont des séquences d'acides nucléiques (ADN et ARN) ou d'acide aminés identiques ou similaires au sein d'un génome (on parle alors de séquences paralogues) ; à travers les espèces (on parle alors de séquences orthologues), ou bien encore entre un taxon donneur et un taxon récepteur (on parle alors de séquences xénologues). La conservation indique qu'une séquence a été maintenue par la sélection naturelle.
Loi de Cauchy (probabilités)La loi de Cauchy, appelée aussi loi de Lorentz, est une loi de probabilité continue qui doit son nom au mathématicien Augustin Louis Cauchy. Une variable aléatoire X suit une loi de Cauchy si sa densité , dépendant des deux paramètres et ( > 0) est définie par : La fonction ainsi définie s'appelle une lorentzienne. Elle apparaît par exemple en spectroscopie pour modéliser des raies d'émission. Cette distribution est symétrique par rapport à (paramètre de position), le paramètre donnant une information sur l'étalement de la fonction (paramètre d'échelle).
Automate fini inambiguupright=1.5|thumb|Un automate fini inambigu à n+1 états reconnaissant les mots qui ont un a en position n depuis la fin. Un automate déterministe équivalent a au moins états En théorie des automates, un automate fini inambigu (on dit aussi non ambigu, en anglais , abrégé en UFA) est un automate fini non déterministe d'un type particulier. C'est un automate qui, pour chaque mot accepté, ne possède qu'un seul calcul réussi. Tout automate fini déterministe est inambigu, mais la réciproque est fausse.
Automate fini alternantEn informatique théorique, et notamment en théorie des automates, un automate fini alternant est une extension des automates finis. Dans un automate fini non déterministe usuel, un mot est accepté si, parmi les états atteints, il y a au moins un état final. Dans automate fini alternant, c'est la valeur d'une fonction booléenne sur les états atteints qui définit la condition d'acceptation.
Espace probabiliséUn espace de probabilité(s) ou espace probabilisé est construit à partir d'un espace probabilisable en le complétant par une mesure de probabilité : il permet la modélisation quantitative de l'expérience aléatoire étudiée en associant une probabilité numérique à tout événement lié à l'expérience. Formellement, c'est un triplet formé d'un ensemble , d'une tribu sur et d'une mesure sur cette tribu tel que . L'ensemble est appelé l'univers et les éléments de sont appelés les événements.