Linear elasticityLinear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics. The fundamental "linearizing" assumptions of linear elasticity are: infinitesimal strains or "small" deformations (or strains) and linear relationships between the components of stress and strain. In addition linear elasticity is valid only for stress states that do not produce yielding.
Processus gaussienEn théorie des probabilités et en statistiques, un processus gaussien est un processus stochastique (une collection de variables aléatoires avec un index temporel ou spatial) de telle sorte que chaque collection finie de ces variables aléatoires suit une loi normale multidimensionnelle ; c'est-à-dire que chaque combinaison linéaire est normalement distribuée. La distribution d'un processus gaussien est la loi jointe de toutes ces variables aléatoires. Ses réalisations sont donc des fonctions avec un domaine continu.
DérivabilitéUne fonction réelle d'une variable réelle est dérivable en un point a quand elle admet une dérivée finie en a, c'est-à-dire, intuitivement, quand elle peut être approchée de manière assez fine par une fonction affine au voisinage de a. Elle est dérivable sur un intervalle réel ouvert non vide si elle est dérivable en chaque point de cet intervalle. Elle est dérivable sur un intervalle réel fermé et borné (c'est-à-dire sur un segment réel) non réduit à un point si elle est dérivable sur l'intérieur de cet intervalle et dérivable à droite en sa borne gauche, et dérivable à gauche en sa borne droite.
Validation croiséeLa validation croisée () est, en apprentissage automatique, une méthode d’estimation de fiabilité d’un modèle fondée sur une technique d’échantillonnage. Supposons posséder un modèle statistique avec un ou plusieurs paramètres inconnus, et un ensemble de données d'apprentissage sur lequel on peut apprendre (ou « entraîner ») le modèle. Le processus d'apprentissage optimise les paramètres du modèle afin que celui-ci corresponde le mieux possible aux données d'apprentissage.
Calcul numérique d'une intégraleEn analyse numérique, il existe une vaste famille d’algorithmes dont le but principal est d’estimer la valeur numérique de l’intégrale définie sur un domaine particulier pour une fonction donnée (par exemple l’intégrale d’une fonction d’une variable sur un intervalle). Ces techniques procèdent en trois phases distinctes : Décomposition du domaine en morceaux (un intervalle en sous-intervalles contigus) ; Intégration approchée de la fonction sur chaque morceau ; Sommation des résultats numériques ainsi obtenus.
Moyenne pondéréeLa moyenne pondérée est la moyenne d'un certain nombre de valeurs affectées de coefficients. En statistiques, considérant un ensemble de données et les coefficients, ou poids, correspondants, de somme non nulle, la moyenne pondérée est calculée suivant la formule : quotient de la somme pondérée des par la somme des poids soit Il s'agit donc du barycentre du système . Lorsque tous les poids sont égaux, la moyenne pondérée est identique à la moyenne arithmétique.
Fonction gammaEn mathématiques, la fonction gamma (notée par Γ la lettre grecque majuscule gamma de l'alphabet grec) est une fonction utilisée communément, qui prolonge de la fonction factorielle à l'ensemble des nombres complexes. En ce sens, il s'agit une fonction complexe. Elle est considérée également comme une fonction spéciale. La fonction gamma est défini pour tous les nombres complexes, à l'exception des entiers négatifs. On a pour tout entier strictement positif, où est la factorielle de , c'est-à-dire le produit des entiers entre 1 et : .
FenêtrageEn traitement du signal, le fenêtrage est utilisé dès que l'on s'intéresse à un signal de longueur volontairement limitée. En effet, un signal réel ne peut qu'avoir une durée limitée dans le temps ; de plus, un calcul ne peut se faire que sur un nombre fini de points. Pour observer un signal sur une durée finie, on le multiplie par une fonction fenêtre d'observation (également appelée fenêtre de pondération ou d'apodisation).
Fonction d'AiryLa fonction d'Airy Ai est une des fonctions spéciales en mathématiques, c'est-à-dire une des fonctions remarquables apparaissant fréquemment dans les calculs. Elle porte le nom de l'astronome britannique George Biddell Airy, qui l'introduisit pour ses calculs d'optique, notamment lors de l'étude de l'arc-en-ciel. La fonction d'Airy Ai et la fonction Bi, qu'on appelle fonction d'Airy de seconde espèce, sont des solutions de l'équation différentielle linéaire d'ordre deux connue sous le nom d'équation d'Airy.
Variance (mathématiques)vignette|Exemple d'échantillons pour deux populations ayant la même moyenne mais des variances différentes. La population en rouge a une moyenne de 100 et une variance de 100 (écart-type = SD = standard deviation = 10). La population en bleu a une moyenne de 100 et une variance de (écart-type = SD = 50). En statistique et en théorie des probabilités, la variance est une mesure de la dispersion des valeurs d'un échantillon ou d'une variable aléatoire.