Unimodular latticeIn geometry and mathematical group theory, a unimodular lattice is an integral lattice of determinant 1 or −1. For a lattice in n-dimensional Euclidean space, this is equivalent to requiring that the volume of any fundamental domain for the lattice be 1. The E8 lattice and the Leech lattice are two famous examples. A lattice is a free abelian group of finite rank with a symmetric bilinear form (·, ·). The lattice is integral if (·,·) takes integer values. The dimension of a lattice is the same as its rank (as a Z-module).
Théorème de FubiniEn mathématiques, et plus précisément en analyse, le théorème de Fubini fournit des informations sur le calcul d'intégrales définies sur des ensembles produits et permet le calcul de telles intégrales. Ce résultat a été introduit par Guido Fubini en 1907. Il indique que sous certaines conditions, pour intégrer une fonction à plusieurs variables, on peut intégrer les variables les unes à la suite des autres.
Densely defined operatorIn mathematics – specifically, in operator theory – a densely defined operator or partially defined operator is a type of partially defined function. In a topological sense, it is a linear operator that is defined "almost everywhere". Densely defined operators often arise in functional analysis as operations that one would like to apply to a larger class of objects than those for which they a priori "make sense".
Change of ringsIn algebra, a change of rings is an operation of changing a coefficient ring to another. Given a ring homomorphism , there are three ways to change the coefficient ring of a module; namely, for a right R-module M and a right S-module N, one can form the induced module, formed by extension of scalars, the coinduced module, formed by co-extension of scalars, and formed by restriction of scalars. They are related as adjoint functors: and This is related to Shapiro's lemma.
Théorèmes d'isomorphismeEn mathématiques, les trois théorèmes d'isomorphisme fournissent l'existence d'isomorphismes dans le cadre de la théorie des groupes. Ces trois théorèmes d'isomorphisme sont généralisables à d'autres structures que les groupes. Voir notamment « Anneau quotient », « Algèbre universelle » et « Groupe à opérateurs ». Le premier théorème d'isomorphisme affirme qu'étant donné un morphisme de groupes , on peut rendre injectif en quotientant par son noyau Ker f, qui est un sous-groupe normal de G.
Reflexive verbIn grammar, a reflexive verb is, loosely, a verb whose direct object is the same as its subject, for example, "I wash myself". More generally, a reflexive verb has the same semantic agent and patient (typically represented syntactically by the subject and the direct object). For example, the English verb to perjure is reflexive, since one can only perjure oneself. In a wider sense, the term refers to any verb form whose grammatical object is a reflexive pronoun, regardless of semantics; such verbs are also more broadly referred to as pronominal verbs, especially in the grammar of the Romance languages.
Group isomorphismIn abstract algebra, a group isomorphism is a function between two groups that sets up a one-to-one correspondence between the elements of the groups in a way that respects the given group operations. If there exists an isomorphism between two groups, then the groups are called isomorphic. From the standpoint of group theory, isomorphic groups have the same properties and need not be distinguished.
Preuve combinatoireIn mathematics, the term combinatorial proof is often used to mean either of two types of mathematical proof: A proof by double counting. A combinatorial identity is proven by counting the number of elements of some carefully chosen set in two different ways to obtain the different expressions in the identity. Since those expressions count the same objects, they must be equal to each other and thus the identity is established. A bijective proof. Two sets are shown to have the same number of members by exhibiting a bijection, i.
Anneau adéliqueEn mathématiques et dans la théorie des nombres, l'anneau adélique, ou anneau des adèles, est un anneau topologique contenant le corps des nombres rationnels (ou, plus généralement, un corps de nombres algébriques), construit à l'aide de toutes les complétions du corps. Le mot « adèle » est une abréviation pour « additive idele » (« idèle additive »). . Les adèles étaient appelées vecteurs de valuation ou répartitions avant 1950.
Dualité de SerreEn géométrie algébrique, la dualité de Serre est une dualité pour la cohomologie cohérente de variétés algébriques, démontrée par Jean-Pierre Serre. La version originale s'applique aux fibrés vectoriels sur une variété projective lisse, mais Alexander Grothendieck la généralise largement. Sur une variété de dimension n, le théorème énonce l'isomorphisme d'un groupe de cohomologie avec l'espace dual d'un autre, le . La dualité de Serre est l'analogue pour la cohomologie cohérente de la dualité de Poincaré en topologie.