Groupe classiqueEn mathématiques, les groupes classiques sont différentes familles de groupes de transformations liées à l'algèbre linéaire, principalement les groupes linéaires, orthogonaux, symplectiques et unitaires. Ces groupes peuvent aussi être présentés comme groupes de matrices inversibles, et des quotients de ceux-ci. Les groupes matrices carrées d'ordre n (GL(n, R)), GL(n, C)), le groupe des matrices orthogonales d'ordre n (O(n)) et le groupe des matrices unitaires d'ordre n (U(n)) sont des exemples explicites de groupes classiques.
Scalaire (physique)En physique, un scalaire est une grandeur dont la valeur ne dépend que du point auquel on l'évalue et est indépendante du système de coordonnées. Une grandeur scalaire s'oppose à une grandeur vectorielle : la grandeur scalaire a uniquement une valeur mais pas de direction ou de sens. Les mathématiques utilisent la notion de scalaire dans le même sens en algèbre linéaire, indépendamment de toute grandeur physique. Les quantités scalaires sont invariables par rapport aux rotations de coordonnées (et aux transformations de Lorentz en théorie de la relativité).
ThéorèmeEn mathématiques et en logique, un théorème (du grec théorêma, objet digne d'étude) est une assertion qui est démontrée, c'est-à-dire établie comme vraie à partir d'autres assertions déjà démontrées (théorèmes ou autres formes d'assertions) ou des assertions acceptées comme vraies, appelées axiomes. Un théorème se démontre dans un système déductif et est une conséquence logique d'un système d'axiomes. En ce sens, il se distingue d'une loi scientifique, obtenue par l'expérimentation.
Stokes' theoremStokes' theorem, also known as the Kelvin–Stokes theorem after Lord Kelvin and George Stokes, the fundamental theorem for curls or simply the curl theorem, is a theorem in vector calculus on . Given a vector field, the theorem relates the integral of the curl of the vector field over some surface, to the line integral of the vector field around the boundary of the surface. The classical theorem of Stokes can be stated in one sentence: The line integral of a vector field over a loop is equal to the flux of its curl through the enclosed surface.
Théorème de GreenEn mathématiques, le théorème de Green, ou théorème de Green-Riemann, donne la relation entre une intégrale curviligne le long d'une courbe simple fermée orientée C par morceaux et l'intégrale double sur la région du plan délimitée par cette courbe. Ce théorème, nommé d'après George Green et Bernhard Riemann, est un cas particulier du théorème de Stokes. thumb|upright=0.9|Domaine délimité par une courbe régulière par morceaux. Vu comme cas particulier du théorème de Stokes, le théorème s'écrit sous la forme suivante, en notant ∂D la courbe C et ω la forme différentielle.
Scalaire (mathématiques)En algèbre linéaire, les nombres réels qui multiplient les vecteurs dans un espace vectoriel sont appelés des scalaires. Cette multiplication par un scalaire, qui permet de multiplier un vecteur par un nombre pour produire un vecteur, correspond à la loi externe de l'espace vectoriel. Plus généralement, dans un K-espace vectoriel, les scalaires sont les éléments de K, où K peut être l'ensemble des nombres complexes ou n'importe quel autre corps.
Extension normaleEn mathématiques, une extension L d'un corps K est dite normale ou quasi-galoisienne si c'est une extension algébrique et si tout morphisme de corps de L dans un corps le contenant, induisant l'identité sur K, a son image contenue dans L. De façon équivalente, l'extension L/K est normale si elle est algébrique et si tout conjugué d'un élément de L appartient encore à L. Cette propriété est utilisée pour définir une extension de Galois : c'est une extension algébrique séparable et normale.
Application transposéeEn mathématiques et plus précisément en algèbre linéaire, l'application transposée d'une application linéaire entre deux espaces vectoriels est l'application entre leurs duals définie par : ou encore, si est le crochet de dualité de : La forme linéaire résultante est nommée application transposée de le long de . Cette définition se généralise à des K-modules à droite sur un anneau (non nécessairement commutatif), en se souvenant que le dual d'un K-module à droite est un K-module à gauche, ou encore un module à droite sur l'anneau opposé K.
Operator theoryIn mathematics, operator theory is the study of linear operators on function spaces, beginning with differential operators and integral operators. The operators may be presented abstractly by their characteristics, such as bounded linear operators or closed operators, and consideration may be given to nonlinear operators. The study, which depends heavily on the topology of function spaces, is a branch of functional analysis. If a collection of operators forms an algebra over a field, then it is an operator algebra.
Pronom réfléchiEn grammaire le pronom réfléchi est un pronom qui se réfère à l’agent d’une action, celui-ci étant d’ordinaire le sujet d’un verbe, et le pronom étant le complément de ce verbe. Dans certaines langues, comme le français ou le roumain, le pronom réfléchi peut aussi se référer à un agent sous-entendu du procès exprimé par un nom, le pronom étant le complément de celui-ci. Dans certaines langues il y a seulement des pronoms réfléchis disjoints, c’est-à-dire accentués et non attachés au verbe, par exemple en anglais ou en hongrois.