Stabilité numériqueEn analyse numérique, une branche des mathématiques, la stabilité numérique est une propriété globale d’un algorithme numérique, une qualité nécessaire pour espérer obtenir des résultats ayant du sens. Une définition rigoureuse de la stabilité dépend du contexte. Elle se réfère à la propagation des erreurs au cours des étapes du calcul, à la capacité de l’algorithme de ne pas trop amplifier d’éventuels écarts, à la précision des résultats obtenus. Le concept de stabilité ne se limite pas aux erreurs d’arrondis et à leurs conséquences.
Dérivation numériqueEn analyse numérique, les algorithmes de dérivation numérique évaluent la dérivée d'une fonction mathématique ou d'un sous-programme de fonction en utilisant les valeurs de la fonction et peut-être d'autres propriétés connues sur la fonction. droite|255x255px La méthode la plus simple consiste à utiliser des approximations de différences finies. Une simple estimation à deux points consiste à calculer la pente d'une droite sécante proche passant par les points et .
Équations d'EulerEn mécanique des fluides, les équations d'Euler sont des équations aux dérivées partielles non linéaires qui décrivent l'écoulement des fluides (liquide ou gaz) dans l’approximation des milieux continus. Ces écoulements sont adiabatiques, sans échange de quantité de mouvement par viscosité ni d'énergie par conduction thermique. L'histoire de ces équations remonte à Leonhard Euler qui les a établies pour des écoulements incompressibles (1757).
Analyse numériqueL’analyse numérique est une discipline à l'interface des mathématiques et de l'informatique. Elle s’intéresse tant aux fondements qu’à la mise en pratique des méthodes permettant de résoudre, par des calculs purement numériques, des problèmes d’analyse mathématique. Plus formellement, l’analyse numérique est l’étude des algorithmes permettant de résoudre numériquement par discrétisation les problèmes de mathématiques continues (distinguées des mathématiques discrètes).
Équation différentielleEn mathématiques, une équation différentielle est une équation dont la ou les « inconnue(s) » sont des fonctions ; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. C'est un cas particulier d'équation fonctionnelle. On distingue généralement deux types d'équations différentielles : les équations différentielles ordinaires (EDO) où la ou les fonctions inconnues recherchées ne dépendent que d'une seule variable ; les équations différentielles partielles, plutôt appelées équations aux dérivées partielles (EDP), où la ou les fonctions inconnues recherchées peuvent dépendre de plusieurs variables indépendantes.
Équation aux dérivées partiellesEn mathématiques, plus précisément en calcul différentiel, une équation aux dérivées partielles (parfois appelée équation différentielle partielle et abrégée en EDP) est une équation différentielle dont les solutions sont les fonctions inconnues dépendant de plusieurs variables vérifiant certaines conditions concernant leurs dérivées partielles. Une EDP a souvent de très nombreuses solutions, les conditions étant moins strictes que dans le cas d'une équation différentielle ordinaire à une seule variable ; les problèmes comportent souvent des conditions aux limites qui restreignent l'ensemble des solutions.
Débit (physique)Le débit est la quantité d'une grandeur qui traverse une surface donnée par unité de temps. Il permet de quantifier un déplacement de matière ou d'énergie. Le terme débit est le plus souvent associé au débit volumique : il quantifie alors le volume qui traverse une surface, une section, par unité de temps. Le débit massique caractérise la masse qui traverse la surface par unité de temps. Il s'agit de notions centrales dans une situation d'écoulement de fluide.
Particule fluideUne particule fluide, en mécanique des fluides, est un volume élémentaire de fluide d'échelle mésoscopique. L’échelle mésoscopique est typiquement de l'ordre du micromètre. C'est une échelle d'une part suffisamment petite pour que la grandeur étudiée puisse être considérée comme ponctuelle, et d'autre part suffisamment grande pour pouvoir considérer le milieu comme continu, c'est-à-dire ne pas avoir à faire une étude discrète de toutes les molécules.
Numerical methods for ordinary differential equationsNumerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly. For practical purposes, however – such as in engineering – a numeric approximation to the solution is often sufficient. The algorithms studied here can be used to compute such an approximation.
Perméabilité (matériau)La perméabilité d'un milieu poreux mesure son aptitude à se laisser traverser par un fluide sous l'effet d'un gradient de pression ou d'un champ de gravité. Cette quantité est liée à la loi de Darcy. L'absence de perméabilité s'appelle l'imperméabilité. Une hypothèse sous-jacente à la définition est que l'écoulement dans le milieu est un écoulement en régime de Stokes. Cette hypothèse est utilisée pour établir l'équation de Darcy à partir de la description de la porosité par la méthode de prise de moyenne volumique ou par homogénéisation.