Conditionnement (analyse numérique)En analyse numérique, une discipline des mathématiques, le conditionnement mesure la dépendance de la solution d'un problème numérique par rapport aux données du problème, ceci afin de contrôler la validité d'une solution calculée par rapport à ces données. En effet, les données d'un problème numérique dépendent en général de mesures expérimentales et sont donc entachées d'erreurs. Il s'agit le plus souvent d'une quantité numérique. De façon plus générale, on peut dire que le conditionnement associé à un problème est une mesure de la difficulté de calcul numérique du problème.
Échantillonnage (statistiques)thumb|Exemple d'échantillonnage aléatoire En statistique, l'échantillonnage désigne les méthodes de sélection d'un sous-ensemble d'individus (un échantillon) à l'intérieur d'une population pour estimer les caractéristiques de l'ensemble de la population. Cette méthode présente plusieurs avantages : une étude restreinte sur une partie de la population, un moindre coût, une collecte des données plus rapide que si l'étude avait été réalisé sur l'ensemble de la population, la réalisation de contrôles destructifs Les résultats obtenus constituent un échantillon.
Différence finieEn mathématiques, et plus précisément en analyse, une différence finie est une expression de la forme f(x + b) − f(x + a) (où f est une fonction numérique) ; la même expression divisée par b − a s'appelle un taux d'accroissement (ou taux de variation), et il est possible, plus généralement, de définir de même des différences divisées. L'approximation des dérivées par des différences finies joue un rôle central dans les méthodes des différences finies utilisées pour la résolution numérique des équations différentielles, tout particulièrement pour les problèmes de conditions aux limites.
Théorie de l'approximationEn mathématiques, la théorie de l'approximation concerne la façon dont les fonctions peuvent être approchées par de plus simples fonctions, en donnant une caractérisation quantitative des erreurs introduites par ces approximations. Le problème de l'approximation s'est posé très tôt en géométrie, pour les fonctions trigonométriques : ce sont des fonctions dont on connaît les propriétés (parité, dérivabilité, valeurs en des points particuliers) mais qui ne s'expriment pas à partir d'opérations réalisables à la main (les quatre opérations).
Développement asymptotiqueEn mathématiques, un développement asymptotique d'une fonction f donnée dans un voisinage fixé est une somme finie de fonctions de référence qui donne une bonne approximation du comportement de la fonction f dans le voisinage considéré. Le concept de développement asymptotique a été introduit par Poincaré à propos de l'étude du problème à N corps de la mécanique céleste par la théorie des perturbations. La somme étant finie, la question de la convergence ne se pose pas.
Approximation affineEn mathématiques, une approximation affine est une approximation d'une fonction au voisinage d'un point à l'aide d'une fonction affine. Une approximation affine sert principalement à simplifier un problème dont on peut obtenir une solution approchée. Deux façons classiques d'obtenir une approximation affine de fonction passent par l'interpolation ou le développement limité à l’ordre 1.
Continuous functionIn mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value, known as discontinuities. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is .
Échantillonnage stratifiévignette|Vous prenez un échantillon aléatoire stratifié en divisant d'abord la population en groupes homogènes (semblables en eux-mêmes) (strates) qui sont distincts les uns des autres, c'est-à-dire. Le groupe 1 est différent du groupe 2. Ensuite, choisissez un EAS (échantillon aléatoire simple) distinct dans chaque strate et combinez ces EAS pour former l'échantillon complet. L'échantillonnage aléatoire stratifié est utilisé pour produire des échantillons non biaisés.
Théorème d'échantillonnageLe théorème d'échantillonnage, dit aussi théorème de Shannon ou théorème de Nyquist-Shannon, établit les conditions qui permettent l'échantillonnage d'un signal de largeur spectrale et d'amplitude limitées. La connaissance de plus de caractéristiques du signal permet sa description par un nombre inférieur d'échantillons, par un processus d'acquisition comprimée. Dans le cas général, le théorème d'échantillonnage énonce que l’échantillonnage d'un signal exige un nombre d'échantillons par unité de temps supérieur au double de l'écart entre les fréquences minimale et maximale qu'il contient.
Fonction (mathématiques)vignette|Diagramme de calcul pour la fonction En mathématiques, une fonction permet de définir un résultat (le plus souvent numérique) pour chaque valeur d’un ensemble appelé domaine. Ce résultat peut être obtenu par une suite de calculs arithmétiques ou par une liste de valeurs, notamment dans le cas de relevé de mesures physiques, ou encore par d’autres procédés comme les résolutions d’équations ou les passages à la limite. Le calcul effectif du résultat ou son approximation repose éventuellement sur l’élaboration de fonction informatique.