Recalage d'imagesEn , le recalage est une technique qui consiste en la « mise en correspondance d'images », dans le but de comparer ou combiner leurs informations respectives. Cette méthode repose sur les mêmes principes physique et le même type de modélisation mathématique que la . Cette mise en correspondance se fait par la recherche d'une transformation géométrique permettant de passer d'une image à une autre.
Ajustement de courbethumb|upright=2.2|Ajustement par itérations d'une courbe bruitée par un modèle de pic asymétrique (méthode de Gauss-Newton avec facteur d'amortissement variable). L'ajustement de courbe est une technique d'analyse d'une courbe expérimentale, consistant à construire une courbe à partir de fonctions mathématiques et d'ajuster les paramètres de ces fonctions pour se rapprocher de la courbe mesurée . On utilise souvent le terme anglais curve fitting, profile fitting ou simplement fitting, pour désigner cette méthode ; on utilise souvent le franglais « fitter une courbe » pour dire « ajuster une courbe ».
Assemblage de photosL'assemblage de photos est un procédé consistant à combiner plusieurs se recouvrant, dans le but de produire un panorama ou une image de haute définition. thumb|right|upright=2|alt=Exemple de détection de zones de recouvrement pour l'assemblage d'un panorama : une série de six images sont assemblées en panorama, une ligne rouge délimitant les zones de recouvrement.|Exemple de détection de zones de recouvrement pour l'assemblage d'un panorama. Photographie panoramique Panographie Catégorie:Vision artificiel
Méthode des moindres carrésLa méthode des moindres carrés, indépendamment élaborée par Legendre et Gauss au début du , permet de comparer des données expérimentales, généralement entachées d’erreurs de mesure, à un modèle mathématique censé décrire ces données. Ce modèle peut prendre diverses formes. Il peut s’agir de lois de conservation que les quantités mesurées doivent respecter. La méthode des moindres carrés permet alors de minimiser l’impact des erreurs expérimentales en « ajoutant de l’information » dans le processus de mesure.
Gabor waveletGabor wavelets are wavelets invented by Dennis Gabor using complex functions constructed to serve as a basis for Fourier transforms in information theory applications. They are very similar to Morlet wavelets. They are also closely related to Gabor filters. The important property of the wavelet is that it minimizes the product of its standard deviations in the time and frequency domain. Put another way, the uncertainty in information carried by this wavelet is minimized.
Interpolation numériqueEn analyse numérique (et dans son application algorithmique discrète pour le calcul numérique), l'interpolation est une opération mathématique permettant de remplacer une courbe ou une fonction par une autre courbe (ou fonction) plus simple, mais qui coïncide avec la première en un nombre fini de points (ou de valeurs) donnés au départ. Suivant le type d'interpolation, outre le fait de coïncider en un nombre fini de points ou de valeurs, il peut aussi être demandé à la courbe ou à la fonction construite de vérifier des propriétés supplémentaires.
Moindres carrés non linéairesLes moindres carrés non linéaires est une forme des moindres carrés adaptée pour l'estimation d'un modèle non linéaire en n paramètres à partir de m observations (m > n). Une façon d'estimer ce genre de problème est de considérer des itérations successives se basant sur une version linéarisée du modèle initial. Méthode des moindres carrés Considérons un jeu de m couples d'observations, (x, y), (x, y),...,(x, y), et une fonction de régression du type y = f (x, β).
NURBSLes B-splines rationnelles non uniformes, plus communément désignées par leur acronyme anglais NURBS (pour Non-Uniform Rational Basis Splines), correspondent à une généralisation des B-splines car ces fonctions sont définies avec des points en coordonnées homogènes. Le principal intérêt de ces courbes NURBS est qu'elles parviennent même à ajuster des courbes qui ne peuvent pas être représentées par des B-splines uniformes.
Total least squaresIn applied statistics, total least squares is a type of errors-in-variables regression, a least squares data modeling technique in which observational errors on both dependent and independent variables are taken into account. It is a generalization of Deming regression and also of orthogonal regression, and can be applied to both linear and non-linear models. The total least squares approximation of the data is generically equivalent to the best, in the Frobenius norm, low-rank approximation of the data matrix.
Filtre numériqueEn électronique, un filtre numérique est un élément qui effectue un filtrage à l'aide d'une succession d'opérations mathématiques sur un signal discret. C'est-à-dire qu'il modifie le contenu spectral du signal d'entrée en atténuant ou éliminant certaines composantes spectrales indésirées. Contrairement aux filtres analogiques, qui sont réalisés à l'aide d'un agencement de composantes physiques (résistance, condensateur, inductance, transistor, etc.