Série génératriceEn mathématiques, et notamment en analyse et en combinatoire, une série génératrice (appelée autrefois fonction génératrice, terminologie encore utilisée en particulier dans le contexte de la théorie des probabilités) est une série formelle dont les coefficients codent une suite de nombres (ou plus généralement de polynômes) ; on dit que la série est associée à la suite. Ces séries furent introduites par Abraham de Moivre en 1730, pour obtenir des formules explicites pour des suites définies par récurrence linéaire.
Application lipschitzienneEn analyse mathématique, une application lipschitzienne (du nom de Rudolf Lipschitz) est une application possédant une certaine propriété de régularité qui est plus forte que la continuité. Intuitivement, c'est une fonction qui est limitée dans sa manière d'évoluer. Tout segment reliant deux points du graphe d'une telle fonction aura une pente inférieure, en valeur absolue, à une constante appelée constante de Lipschitz. Les fonctions lipschitziennes sont un cas particulier de fonctions höldériennes.
Inégalité de HölderEn analyse, l’inégalité de Hölder, ainsi nommée en l'honneur de Otto Hölder, est une inégalité fondamentale relative aux espaces de fonctions , comme les espaces de suites . C'est une généralisation de l'inégalité de Cauchy-Schwarz. Il existe une formulation de l'inégalité utilisée en mathématiques discrètes. Plus généralement, pour et défini par , si et alors et . De plus, lorsque et sont finis, il y a égalité si et seulement si et sont colinéaires presque partout (p.p.), c'est-à-dire s’il existe et non simultanément nuls tels que p.
Absolue continuitéEn mathématiques, et plus précisément en analyse, on définit, pour des fonctions définies sur un intervalle borné, la notion de fonction absolument continue, un peu plus forte que la notion de fonction uniformément continue, et garantissant de bonnes propriétés d'intégration ; on lui associe d'ailleurs la notion de mesure absolument continue. Le premier théorème fondamental de l'analyse a pour conséquence que toute fonction continue sur un intervalle réel est égale à la dérivée de sa fonction intégrale (au sens de Riemann) définie par .
Fonction trigonométriquethumb|upright=1.35|Toutes les valeurs des fonctions trigonométriques d'un angle θ peuvent être représentées géométriquement. En mathématiques, les fonctions trigonométriques permettent de relier les longueurs des côtés d'un triangle en fonction de la mesure des angles aux sommets. Plus généralement, ces fonctions sont importantes pour étudier les triangles et les polygones, les cercles (on les appelle alors fonctions circulaires) et modéliser des phénomènes périodiques.
ÉchelleLe terme échelle (ou au pluriel échelles) peut désigner différents idées. Une échelle est un dispositif permettant de se déplacer en hauteur. Ce terme est aussi synonyme d'escalier. Une échelle est un ensemble de graduations d’un tableau de mesures ; Une échelle est une proportion de taille entre la représentation d’une chose et la chose représentée, en géométrie mathématique, en particulier sur une carte géographique (où l'échelle est le rapport existant entre une longueur mesurée sur le terrain et sa représentation cartographique).
Splinevignette|Exemple de spline quadratique. En mathématiques appliquées et en analyse numérique, une spline est une fonction définie par morceaux par des polynômes. Spline est un terme anglais qui, lorsqu'il est utilisé en français, est généralement prononcé , à la française. Il désigne une réglette de bois souple appelée cerce en français. Toutefois, dans l'usage des mathématiques appliquées, le terme anglais spline est généralisé et le mot français cerce ignoré.
DérivéeEn mathématiques, la dérivée d'une fonction d'une variable réelle mesure l'ampleur du changement de la valeur de la fonction (valeur de sortie) par rapport à un petit changement de son argument (valeur d'entrée). Les calculs de dérivées sont un outil fondamental du calcul infinitésimal. Par exemple, la dérivée de la position d'un objet en mouvement par rapport au temps est la vitesse (instantanée) de l'objet. La dérivée d'une fonction est une fonction qui, à tout nombre pour lequel admet un nombre dérivé, associe ce nombre dérivé.
Time–frequency analysisIn signal processing, time–frequency analysis comprises those techniques that study a signal in both the time and frequency domains simultaneously, using various time–frequency representations. Rather than viewing a 1-dimensional signal (a function, real or complex-valued, whose domain is the real line) and some transform (another function whose domain is the real line, obtained from the original via some transform), time–frequency analysis studies a two-dimensional signal – a function whose domain is the two-dimensional real plane, obtained from the signal via a time–frequency transform.
Fonction analytiquevignette|Tracé du module de la fonction gamma (son prolongement analytique) dans le plan complexe. En mathématiques, et plus précisément en analyse, une fonction analytique est une fonction d'une variable réelle ou complexe qui est développable en série entière au voisinage de chacun des points de son domaine de définition, c'est-à-dire que pour tout de ce domaine, il existe une suite donnant une expression de la fonction, valable pour tout assez proche de , sous la forme d'une série convergente : Toute fonction analytique est dérivable de dérivée analytique, ce qui implique que toute fonction analytique est indéfiniment dérivable, mais la réciproque est fausse en analyse réelle.