Bayes estimatorIn estimation theory and decision theory, a Bayes estimator or a Bayes action is an estimator or decision rule that minimizes the posterior expected value of a loss function (i.e., the posterior expected loss). Equivalently, it maximizes the posterior expectation of a utility function. An alternative way of formulating an estimator within Bayesian statistics is maximum a posteriori estimation. Suppose an unknown parameter is known to have a prior distribution .
Bruit roseLe bruit rose est un signal aléatoire dont la densité spectrale est constante par bande d'octave. Sa densité spectrale de puissance est inversement proportionnelle à la fréquence du signal. Tandis que le bruit blanc a une énergie spectrale constante sur l'intégralité de l'échelle des fréquences, soit par hertz, le bruit rose possède lui une énergie constante par bande d'octave. Par exemple, avec le bruit rose, la bande d'octave s'étalant de 500 à 1000 hertz contient la même énergie que celle s'étalant de 4000 à 8000 hertz.
Loi de PoissonEn théorie des probabilités et en statistiques, la loi de Poisson est une loi de probabilité discrète qui décrit le comportement du nombre d'événements se produisant dans un intervalle de temps fixé, si ces événements se produisent avec une fréquence moyenne ou espérance connue, et indépendamment du temps écoulé depuis l'événement précédent. gauche|vignette|Chewing gums sur un trottoir. Le nombre de chewing gums sur un pavé est approximativement distribué selon une loi de Poisson.
Débruitage par patchsLe débruitage par morceaux (patchs) est une technique de débruitage d'image utilisant l'algorithme de réduction du bruit numérique appelé en Anglais "non-local means". Contrairement aux filtres habituels qui réalisent une moyenne des valeurs du groupe de pixels localisés autour d'un pixel cible afin de réduire le bruit, le filtre "non-local means" réalise une moyenne de la totalité des valeurs des pixels contenus dans l'image, pondérées en fonction de leur similarité avec le pixel cible.
Bruit blancthumb|Échantillon de bruit blanc. thumb|Spectre plat d'un bruit blanc (sur l'abscisse, la fréquence ; en ordonnée, l'intensité). Un bruit blanc est une réalisation d'un processus aléatoire dans lequel la densité spectrale de puissance est la même pour toutes les fréquences de la bande passante. Le bruit additif blanc gaussien est un bruit blanc qui suit une loi normale de moyenne et variance données. Des générateurs de signaux aléatoires () sont utilisés pour des essais de dispositifs de transmission et, à faible niveau, pour l'amélioration des systèmes numériques par dither.
Point estimationIn statistics, point estimation involves the use of sample data to calculate a single value (known as a point estimate since it identifies a point in some parameter space) which is to serve as a "best guess" or "best estimate" of an unknown population parameter (for example, the population mean). More formally, it is the application of a point estimator to the data to obtain a point estimate. Point estimation can be contrasted with interval estimation: such interval estimates are typically either confidence intervals, in the case of frequentist inference, or credible intervals, in the case of Bayesian inference.
Bessel's correctionIn statistics, Bessel's correction is the use of n − 1 instead of n in the formula for the sample variance and sample standard deviation, where n is the number of observations in a sample. This method corrects the bias in the estimation of the population variance. It also partially corrects the bias in the estimation of the population standard deviation. However, the correction often increases the mean squared error in these estimations. This technique is named after Friedrich Bessel.
Erreur quadratique moyenneEn statistiques, l’erreur quadratique moyenne d’un estimateur d’un paramètre de dimension 1 (mean squared error (), en anglais) est une mesure caractérisant la « précision » de cet estimateur. Elle est plus souvent appelée « erreur quadratique » (« moyenne » étant sous-entendu) ; elle est parfois appelée aussi « risque quadratique ».
Théorie de l'estimationEn statistique, la théorie de l'estimation s'intéresse à l'estimation de paramètres à partir de données empiriques mesurées ayant une composante aléatoire. Les paramètres décrivent un phénomène physique sous-jacent tel que sa valeur affecte la distribution des données mesurées. Un estimateur essaie d'approcher les paramètres inconnus à partir des mesures.
Distribution de DiracEn mathématiques, plus précisément en analyse, la distribution de Dirac, aussi appelée par abus de langage fonction δ de Dirac, introduite par Paul Dirac, peut être informellement considérée comme une fonction qui prend une « valeur » infinie en 0, et la valeur zéro partout ailleurs, et dont l'intégrale sur R est égale à 1. La représentation graphique de la « fonction » δ peut être assimilée à l'axe des abscisses en entier et le demi axe des ordonnées positives.