Segmentation d'imageLa segmentation d'image est une opération de s consistant à détecter et rassembler les pixels suivant des critères, notamment d'intensité ou spatiaux, l'image apparaissant ainsi formée de régions uniformes. La segmentation peut par exemple montrer les objets en les distinguant du fond avec netteté. Dans les cas où les critères divisent les pixels en deux ensembles, le traitement est une binarisation. Des algorithmes sont écrits comme substitut aux connaissances de haut niveau que l'homme mobilise dans son identification des objets et structures.
Courbe remplissanteEn analyse mathématique, une courbe remplissante (parfois appelée courbe de remplissage) est une courbe dont l' contient le carré unité entier (ou plus généralement un hypercube de dimension n). En raison du fait que le mathématicien Giuseppe Peano (1858–1932) a été le premier à découvrir dans le plan (en dimension 2) une telle courbe, les courbes remplissantes sont parfois appelées courbes de Peano, mais cette dénomination fait maintenant référence à la courbe de Peano qui désigne cet exemple spécifique de courbe remplissante découvert par Peano.
Ajustement de courbethumb|upright=2.2|Ajustement par itérations d'une courbe bruitée par un modèle de pic asymétrique (méthode de Gauss-Newton avec facteur d'amortissement variable). L'ajustement de courbe est une technique d'analyse d'une courbe expérimentale, consistant à construire une courbe à partir de fonctions mathématiques et d'ajuster les paramètres de ces fonctions pour se rapprocher de la courbe mesurée . On utilise souvent le terme anglais curve fitting, profile fitting ou simplement fitting, pour désigner cette méthode ; on utilise souvent le franglais « fitter une courbe » pour dire « ajuster une courbe ».
Courbe stableEn géométrie algébrique, une courbe stable est une courbe algébrique dont les singularités sont les plus simples possibles. Elles ont été introduites par Deligne et Mumford pour construire une compactification de l'espace de modules de courbes projectives lisses. Soit un corps algébriquement clos. Un point fermé d'une courbe algébrique (c'est-à-dire variété algébrique de dimension 1) sur est appelé un point double ordinaire si le complété formel de l'anneau local est isomorphe à la -algèbre .
Similitude (géométrie)En géométrie euclidienne, une similitude est une transformation qui multiplie toutes les distances par une constante fixe, appelée son rapport. L' de toute figure par une telle application est une figure semblable, c'est-à-dire intuitivement « de même forme ». thumb|300px|Dans ce dessin, les objets de même couleur sont semblables. Les isométries, c'est-à-dire les transformations qui conservent les distances sont des cas particuliers de similitudes ; elles transforment des figures en des figures de même forme et de même taille.
Régularité par morceauxEn mathématiques, les énoncés de certaines propriétés d'analyse et résultats de convergence se réfèrent à des fonctions vérifiant des hypothèses telles que continues par morceaux, dérivables par morceaux Ces fonctions sont regroupées par classes de régularité qui sont autant d'espaces vectoriels emboîtés, appelés « classe C par morceaux » et notés C. vignette|Cette fonction n'est pas continue sur R. En revanche, elle y est continue par morceaux. Une fonction f est continue par morceaux sur le segment [a, b] s’il existe une subdivision σ : a = a0 < .
Continuous functionIn mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value, known as discontinuities. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is .
Differentiable curveDifferential geometry of curves is the branch of geometry that deals with smooth curves in the plane and the Euclidean space by methods of differential and integral calculus. Many specific curves have been thoroughly investigated using the synthetic approach. Differential geometry takes another path: curves are represented in a parametrized form, and their geometric properties and various quantities associated with them, such as the curvature and the arc length, are expressed via derivatives and integrals using vector calculus.
Surface de BézierLes surfaces de Bézier sont une méthode de définition d'une surface grâce aux courbes de Bézier, avantageuses pour définir une courbe par la donnée de points de contrôle. Elles servent à construire une surface lisse à partir de points de contrôle, et leur simplicité de définition en font un outil important de la visualisation graphique. vignette|droite|Un exemple de surface de Bézier. L'ingénieur Pierre Bézier a posé le principe de ces surfaces en 1962 pour concevoir des structures d'automobile.
Similarity measureIn statistics and related fields, a similarity measure or similarity function or similarity metric is a real-valued function that quantifies the similarity between two objects. Although no single definition of a similarity exists, usually such measures are in some sense the inverse of distance metrics: they take on large values for similar objects and either zero or a negative value for very dissimilar objects. Though, in more broad terms, a similarity function may also satisfy metric axioms.