Intégrale d'Itōvignette|Tracé d'une trajectoire échantillon d'un processus de Wiener, ou mouvement brownien, B, ainsi que son intégrale d'Itô par rapport à lui-même. L'intégration par parties ou le lemme d'Itô montre que l'intégrale est égale à (B2 - t)/2. L'intégrale d'Itô, appelée en l'honneur du mathématicien Kiyoshi Itô, est un des outils fondamentaux du calcul stochastique. Elle a d'importantes applications en mathématique financière et pour la résolution des équations différentielles stochastiques.
Infinithumb|∞ : le symbole infini. Le mot « infini » (-e, -s) est un adjectif servant à qualifier quelque chose qui n'a pas de limite en nombre ou en taille. Il vient du latin infīnītus, dérivé de fīnītus « limité » (avec in-, préfixe négatif), issu lui-même du verbe fīnĭo, fīnīre (« délimiter », mais aussi : « préciser », « déterminer », et intransitivement « finir »), et du nom fīnis (souvent au pluriel, fīnes : « bornes, limites d'un champ », « frontières d'un pays ») ; il signifie donc, littéralement « qui est sans borne », mais aussi « indéterminé » et « indéfini ».
Fréchet derivativeIn mathematics, the Fréchet derivative is a derivative defined on normed spaces. Named after Maurice Fréchet, it is commonly used to generalize the derivative of a real-valued function of a single real variable to the case of a vector-valued function of multiple real variables, and to define the functional derivative used widely in the calculus of variations. Generally, it extends the idea of the derivative from real-valued functions of one real variable to functions on normed spaces.
Test de la dérivée premièreEn analyse réelle, le test de la dérivée première permet de déterminer l'allure d'une fonction dérivable en étudiant le signe de sa dérivée. Grâce à ce test, on peut déduire les extrema locaux, le sens de variation de f et les points d'inflexion « horizontaux », permettant ainsi de donner une allure du graphe de la fonction . Soit avec un intervalle ouvert réel (par exemple où et sont des réels). On suppose de plus que dérivable sur .
PrimitiveEn mathématiques, une primitive d’une fonction réelle (ou holomorphe) f est une fonction F dont f est la dérivée : Il s’agit donc d’un antécédent pour l’opération de dérivation. La détermination d’une primitive sert d’abord au calcul des intégrales de fonctions continues sur un segment, en application du théorème fondamental de l'analyse.
Long-range dependenceLong-range dependence (LRD), also called long memory or long-range persistence, is a phenomenon that may arise in the analysis of spatial or time series data. It relates to the rate of decay of statistical dependence of two points with increasing time interval or spatial distance between the points. A phenomenon is usually considered to have long-range dependence if the dependence decays more slowly than an exponential decay, typically a power-like decay. LRD is often related to self-similar processes or fields.
Intégrale multiplevignette|Fig. 2. Intégrale double comme volume du solide situé entre un domaine du plan xy et la surface image de ce domaine par une fonction. En analyse mathématique, l'intégrale multiple est une forme d'intégrale qui s'applique aux fonctions de plusieurs variables réelles. Les deux principaux outils de calcul sont le changement de variables et le théorème de Fubini. Ce dernier permet de ramener de proche en proche un calcul d'intégrale multiple à des calculs d'intégrales simples, et d'interpréter le « volume » d'un domaine « simple » de dimension n (ou son hypervolume si n > 3) comme l'intégrale d'une fonction de n – 1 variables (Fig.
Dérivée totaleEn analyse, la dérivée totale d'une fonction est une généralisation du nombre dérivé pour les fonctions à plusieurs variables. Cette notion est utilisée dans divers domaines de la physique et tout particulièrement en mécanique des milieux continus et en mécanique des fluides dans lesquels les grandeurs dépendent à la fois du temps et de la position. Soit une fonction à plusieurs variables et , , fonctions de .
Intégration (mathématiques)En mathématiques, l'intégration ou calcul intégral est l'une des deux branches du calcul infinitésimal, l'autre étant le calcul différentiel. Les intégrales sont utilisées dans de multiples disciplines scientifiques notamment en physique pour des opérations de mesure de grandeurs (longueur d'une courbe, aire, volume, flux) ou en probabilités. Ses utilités pluridisciplinaires en font un outil scientifique fondamental. C'est la raison pour laquelle l'intégration est souvent abordée dès l'enseignement secondaire.
Exponentielle intégraleEn mathématiques, la fonction exponentielle intégrale, habituellement notée Ei, est définie par : Comme l'intégrale de la fonction inverse () diverge en 0, cette définition doit être comprise, si x > 0, comme une valeur principale de Cauchy. vignette|Représentation graphique de la fonction exponentielle intégrale. La fonction Ei est liée à la fonction li (logarithme intégral) par : vignette|upright=1.5|Représentation graphique des fonctions E (en haut) et Ei (en bas), pour x > 0.