Nombre réelEn mathématiques, un nombre réel est un nombre qui peut être représenté par une partie entière et une liste finie ou infinie de décimales. Cette définition s'applique donc aux nombres rationnels, dont les décimales se répètent de façon périodique à partir d'un certain rang, mais aussi à d'autres nombres dits irrationnels, tels que la racine carrée de 2, π et e.
Majorant ou minorantEn mathématiques, soient (E , ≤) un ensemble ordonné et F une partie de E ; un élément x de E est : un majorant de F s'il est supérieur ou égal, par la relation binaire définie au préalable, à tous les éléments de F : ; un minorant de F s'il est inférieur ou égal, par la relation binaire définie au préalable, à tous les éléments de F :. Si F possède un majorant x alors on dit que F est une partie majorée. Si F possède un minorant x alors on dit que F est une partie minorée.
Fonction de plusieurs variablesEn mathématiques et plus spécialement en analyse vectorielle, une fonction numérique à plusieurs variables réelles est une fonction dont l'ensemble de départ E est une partie du produit cartésien . L'ensemble d'arrivée F peut être ou . Le second cas peut se ramener au premier cas en considérant qu'il s'agit en réalité de p fonctions de dans appelées fonctions coordonnées. La fonction est donc une relation associant à chaque n-uplet x = (x, x, ...
Fonction rationnelleEn mathématiques, une fonction rationnelle est une fonction définie par une fraction rationnelle, c'est-à-dire une dont le numérateur et le dénominateur sont des polynômes. En pratique, l'ensemble de définition est généralement (ensemble des réels) ou (ensemble des complexes). Si P et Q sont deux fonctions polynomiales et si Q n'est pas une fonction nulle, la fonction est définie pour tout x tel que Q(x) ≠ 0 par Une fonction qui n'est pas rationnelle est dite irrationnelle.
Théorème de Pythagorethumb|right|alt=Triangle rectangle et relation algébrique entre les longueurs de ses côtés.|Relation entre les longueurs des côtés dans un triangle rectangle. Le théorème de Pythagore est un théorème de géométrie euclidienne qui met en relation les longueurs des côtés dans un triangle rectangle. Il s'énonce fréquemment sous la forme suivante : Si un triangle est rectangle, le carré de la longueur de l’hypoténuse (ou côté opposé à l'angle droit) est égal à la somme des carrés des longueurs des deux autres côtés.
PythagorePythagore (en grec ancien : ) est un réformateur religieux et philosophe présocratique qui serait né aux environs de 580 av. J.-C. à Samos, une île du sud-est de la mer Égée ; on établit sa mort vers 495 av. J.-C., à l'âge de 85 ans. Il aurait été également mathématicien et scientifique selon une tradition tardive. Le nom de Pythagore (étymologiquement, Pyth-agoras : « celui qui a été annoncé par la Pythie »), découle de l'annonce de sa naissance faite à son père lors d'un voyage à Delphes.
Analyse réelleL'analyse réelle est la branche de l'analyse qui étudie les ensembles de réels et les fonctions de variables réelles. Elle étudie des concepts comme les suites et leurs limites, la continuité, la dérivation, l'intégration et les suites de fonctions. La présentation de l'analyse réelle dans les ouvrages avancés commence habituellement avec des démonstrations simples de résultats de la théorie naïve des ensembles, une définition claire de la notion de fonction, une introduction aux entiers naturels et la démonstration importante du raisonnement par récurrence.
École pythagoricienneL’école pythagoricienne fondée par Pythagore (580-495 av. J.-C.) en Grande-Grèce constitue une confrérie à la fois scientifique et religieuse : le pythagorisme repose en effet sur une initiation et propose à ses adeptes un mode de vie éthique et alimentaire, ainsi que des recherches scientifiques sur le cosmos. Bien que le terme d'école philosophique soit contesté et qu'on préfère généralement parler de secte pour le pythagorisme, cette association religieuse, politique et philosophique dura neuf ou dix générations, et a joui d'une très grande notoriété aussi bien dans l'antiquité grecque que romaine.
Borne supérieure et borne inférieureEn mathématiques, les notions de borne supérieure et borne inférieure d'un ensemble de nombres réels interviennent en analyse, comme cas particulier de la définition générale suivante : la borne supérieure (ou le supremum) d'une partie d'un ensemble (partiellement) ordonné est le plus petit de ses majorants. Une telle borne n'existe pas toujours, mais si elle existe alors elle est unique. Elle n'appartient pas nécessairement à la partie considérée. Dualement, la borne inférieure (ou l'infimum) d'une partie est le plus grand de ses minorants.
Function of a real variableIn mathematical analysis, and applications in geometry, applied mathematics, engineering, and natural sciences, a function of a real variable is a function whose domain is the real numbers , or a subset of that contains an interval of positive length. Most real functions that are considered and studied are differentiable in some interval. The most widely considered such functions are the real functions, which are the real-valued functions of a real variable, that is, the functions of a real variable whose codomain is the set of real numbers.